\(\mathcal{Description}\)

  Link.

  有 \(n\) 支蜡烛,第 \(i\) 支的坐标为 \(x_i\),初始长度为 \(a_i\),每单位时间燃烧变短 \(1\) 直到长度为 \(0\)。你从 \(0\) 位置出发,每次可以向左或向右走 \(1\) 单位,走到一个蜡烛的位置可以吹熄蜡烛。求最多能保留的蜡烛长度之和。

  \(n\le300\)。

\(\mathcal{Solution}\)

  和 甲虫 这题比较像,可以说是相同思路的不同实现方法。问题的核心自然是费用提前计算,我们需要知道想要吹熄的蜡烛数量才能计算当前行动一步带来的总长度损失。注意到 \(n\) 较小,可以直接把这一信息记入状态。

  具体地,加入一支 \(x_{n+1}=a_{n+1}=0\) 的蜡烛,设按坐标排序后该蜡烛的下标为 \(p\)。令 \(f(l,r,0/1,k)~([l,r]\ni p,k\in[0,n])\) 表示当前经过了区间 \([l,r]\) 内的蜡烛位置,停留在 \(l/r\),还希望在这个区间以外获得 \(k\) 支蜡烛。通过忽略“蜡烛长度非负”这一限制,把最大化最大值转化成最大化任意值,可以轻松 DP 求解。复杂度 \(\mathcal O(n^3)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL;
typedef std::pair<int, int> PII;
#define fi first
#define se second const int MAXN = 300;
const LL LINF = 1ll << 60;
int n;
LL f[MAXN + 5][MAXN + 5][2][MAXN + 5];
PII cdl[MAXN + 5]; inline LL dabs( const LL u ) { return u < 0 ? -u : u; }
inline void chkmax( LL& u, const LL v ) { u < v && ( u = v ); } int main() {
scanf( "%d", &n ), ++n;
rep ( i, 2, n ) scanf( "%d %d", &cdl[i].fi, &cdl[i].se ); std::sort( cdl + 1, cdl + n + 1 );
int p = std::lower_bound( cdl + 1, cdl + n + 1, PII( 0, 0 ) ) - cdl; rep ( i, 1, n ) rep ( j, i + 1, n ) rep ( t, 0, 1 ) rep ( k, 0, n ) {
f[i][j][t][k] = -LINF;
}
rep ( i, 0, n ) f[p][p][0][i] = 0;
LL ans = 0;
rep ( len, 0, n - 1 ) {
for ( int i = 0, l, r; i <= len; ++i ) {
if ( ( l = p - i ) <= 0 || ( r = p + len - i ) > n ) continue;
int x[2] = { cdl[l].fi, cdl[r].fi };
rep ( t, 0, 1 ) {
rep ( k, 0, n ) {
LL cur = f[l][r][t][k];
if ( cur == -LINF ) continue;
if ( !k ) { chkmax( ans, cur ); continue; }
if ( l > 1 ) {
chkmax( f[l - 1][r][0][k - 1], cur + cdl[l - 1].se
- dabs( x[t] - cdl[l - 1].fi ) * k );
chkmax( f[l - 1][r][0][k], cur
- dabs( x[t] - cdl[l - 1].fi ) * k );
}
if ( r < n ) {
chkmax( f[l][r + 1][1][k - 1], cur + cdl[r + 1].se
- dabs( x[t] - cdl[r + 1].fi ) * k );
chkmax( f[l][r + 1][1][k], cur
- dabs( x[t] - cdl[r + 1].fi ) * k );
}
}
}
}
}
printf( "%lld\n", ans );
return 0;
}

Solution -「ABC 219H」Candles的更多相关文章

  1. Solution -「ABC 215H」Cabbage Master

    \(\mathcal{Description}\)   Link.   有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同.还有 \(m\) 个盒子,每个盒子可以被放 ...

  2. Solution -「ABC 213G」Connectivity 2

    \(\mathcal{Description}\)   Link.   给定简单无向图 \(G=(V,E)\),点的编号从 \(1\) 到 \(|V|=n\).对于 \(k=2..n\),求 \(H= ...

  3. Solution -「ABC 213H」Stroll

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个结点 \(m\) 条边的简单无向图,每条边的边权是一个常数项为 \(0\) 的 \(T\) 次多项式, ...

  4. Solution -「ABC 217」题解

    D - Cutting Woods 记录每一个切割点,每次求前驱后驱就好了,注意简单判断一下开闭区间. 考场上采用的 FHQ_Treap 无脑莽. #include <cstdio> #i ...

  5. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  6. Solution Set -「ABC 217」

      大家好屑兔子又来啦! [A - Lexicographic Order]   说个笑话,\(\color{black}{\text{W}}\color{red}{\text{alkingDead} ...

  7. Solution -「ARC 110E」Shorten ABC

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\),包含 A, B, C 三种字符的字符串 \(S\),定义一次操作为将其中相邻两个不相同的字符替换为字符集 ...

  8. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  9. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

随机推荐

  1. Python的内存管理和垃圾回收机制

    内存管理 Python解释器由c语言开发完成,py中所有的操作最终都由底层的c语言来实现并完成,所以想要了解底层内存管理需要结合python源码来进行解释. 1. 两个重要的结构体 include/o ...

  2. python多环境管理一(venv与virtualenv)

    一.背景 我们经常会遇见这样的场景: 1.各个项目使用的python版本不相同 由于Python的解释器版本众多,各版本之间差异非常大.特别是python2和python3,互不兼容. 有些项目可能用 ...

  3. kafka学习笔记(六)kafka的controller模块

    概述 今天我们主要看一下kafka的controller的代码,controller代码是kafka的非常重要的代码,需要我们深入学习.从某种意义上来说,它是kafka最核心的组件,一方面,他要为集群 ...

  4. kafka时间轮简易实现(二)

    概述 上一篇主要介绍了kafka时间轮源码和原理,这篇主要介绍一下kafka时间轮简单实现和使用kafka时间轮.如果要实现一个时间轮,就要了解他的数据结构和运行原理,上一篇随笔介绍了不同种类的数据结 ...

  5. PHP靶场-bWAPP环境搭建

    0x00 靶场介绍 bwapp是一款非常好用的漏洞演示平台,包含有100多个漏洞.开源的php应用后台Mysql数据库. 0x01 安装 BWAPP有两种安装方式,一种是单独安装,需部署在Apache ...

  6. markdown mermaid状态图

    状态图 状态图是一种用于计算机科学和相关领域描述系统行为的图.状态图要求描述的系统由有限数量的状态组成. 语法: stateDiagram-v2 [*] --> Still Still --&g ...

  7. Android一句话 | View事件分发

    View中,无论是down,move,还是up,事件都是这样传递的:由dispatchTouchEvent到onTouch,再到onTouchEvent,click是在onTouchEvent中的. ...

  8. golang中结构体的嵌套、方法的继承、方法的重写

    package main import "fmt" type human struct { name, phone string age int8 } type student s ...

  9. Go 获取键盘输入,进制转换

    #### Go 获取键盘输入,进制转换 最近爱上<<珂矣的心灵独语>> 连续听一下礼拜也不觉得厌: 喜欢她的宁静与安然,喜欢她的坦荡与欢喜,喜欢她的禅意与智慧; ***撑着一苇 ...

  10. Java继承的概念与实现

    // 方法 public class Demo { public static void main(String[] args) { Teacher t = new Teacher(); t.name ...