题目链接

https://www.luogu.com.cn/problem/P3385

题目大意

给定一个 \(n\) 个点有向点权图,求是否存在从 \(1\) 点出发能到达的负环。

题目解析

\(SPFA\) 单点入队次数 \(\geq n\) ,即存在负环。

时间复杂度 \(O(nm)\)

参考代码

#include <bits/stdc++.h>
#define N 3005
#define M 10005
using namespace std;
const int INF = 0x3f3f3f3f;
struct edge{
int u, v, w;
};
int n, m, T, d[N];
vector <edge> e;
vector <int> G[N]; int spfa(int s)
{
queue <int> Q;
int inQ[N], g[N];
memset(inQ, 0, sizeof inQ);
memset(g, 0, sizeof g);
for (int i = 1; i <= n; ++i) d[i] = INF;
d[s] = 0, inQ[s] = 1, g[s] = 1;
Q.push(s);
while (!Q.empty()) {
int x = Q.front(); Q.pop();
inQ[x] = 0;
for (int i = 0; i < G[x].size(); ++i) {
int b = e[G[x][i]].v, c = e[G[x][i]].w;
if (d[b] > d[x] + c) {
d[b] = d[x] + c;
if (!inQ[b]) {
inQ[b] = 1;
g[b] ++;
Q.push(b);
if (g[b] >= n) return 1;
}
}
}
}
return 0;
}
void addEdge(int u, int v, int w)
{
e.push_back((edge){u, v, w});
G[u].push_back(e.size()-1);
}
int main()
{
scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &m);
e.clear();
for (int i = 0; i <= n; i++) G[i].clear();
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
if (c >= 0) addEdge(b, a, c);
}
if (spfa(1)) printf("YES\n");
else printf("NO\n");
}
return 0;
}

【模板】负环(SPFA/Bellman-Ford)/洛谷P3385的更多相关文章

  1. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  2. LG P2285 [模板]负环(spfa判负环)

    题目描述 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入格式 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每 ...

  3. 【洛谷 P3385】模板-负环(图论--spfa)

    题目:有一个图有N个顶点,M条边.边用三个整数a b w表示,意思为a->b有一条权值为w的边(若w<0则为单向,否则双向).共T组数据.对于每组数据,存在负环则输出一行"YE5 ...

  4. 洛谷 P3385 【模板】负环 (SPFA)

    题意:有一个\(n\)个点的有向图,从\(1\)出发,问是否有负环. 题解:我们可以用SPFA来进行判断,在更新边的时候,同时更新路径的边数,因为假如有负环的话,SPFA这个过程一定会无限重复的遍历这 ...

  5. 洛谷P3385 【模板】负环(DFS求环)

    洛谷题目传送门 HNOI爆零前回刷模板题 非常不正经的题目,目前并没有合适的优秀算法,就算是大家公认的dfs(还是不要强行叫dfs-spfa吧,概念应该不一样,这就是暴力dfs松弛答案) 但是对于随机 ...

  6. 【洛谷P3385】模板-负环

    这道题普通的bfs spfa或者ballen ford会T 所以我们使用dfs spfa 原因在于,bfs sfpa中每个节点的入队次数不定,退出操作不及时,而dfs则不会 既然,我们需要找负环,那么 ...

  7. 洛谷—— P3385 【模板】负环

    题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 ...

  8. 洛谷 P3385 【模板】负环

    P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M ...

  9. 洛谷 P3385 【模板】负环 题解

    P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入格式 第一行一个正整数T ...

随机推荐

  1. Machine learning (6-Logistic Regression)

    1.Classification However, 2.Hypothesis Representation Python code: import numpy as np def sigmoid(z) ...

  2. Spring源码解读(二):Spring AOP

    一.AOP介绍 面向方面编程(AOP)通过提供另一种思考程序结构的方式来补充面向对象编程(OOP).OOP中模块化的关键单元是类,而在AOP中,模块化单元是方面.方面实现了诸如跨越多种类型和对象的事务 ...

  3. c++中virtual 虚函数

    转载: https://www.cnblogs.com/weiyouqing/p/7544988.html 在面向对象的C++语言中,虚函数(virtual function)是一个非常重要的概念. ...

  4. 51nod_1006 最长公共子序列,输出路径【DP】

    题意: 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个 ...

  5. Pod 生命周期和重启策略

    Pod 在整个生命周期中被系统定义为各种状态,熟悉 Pod 的各种状态对于理解如何设置 Pod 的调度策略.重启策略是很有必要的. Pod 的状态 状态值 描述 Pending API Server ...

  6. 攻防世界 Misc 新手练习区 gif Writeup

    攻防世界 Misc 新手练习区 gif Writeup 题目介绍 题目考点 仔细联想 字符转换 Writeup 下载附件并打开 104张黑白图 发现是一堆黑色和白色的图片,按某种规律排列,猜想flag ...

  7. linux下go环境配置

    环境申明: centos 7.4 1.go下载最新的版本(linux) 下载本地后rz到服务器,然后tar -zxvf  go1.9.2.linux-amd64.tar.gz   解压出go文件放在 ...

  8. python编写脚本,登录Github通过指定仓库指定敏感关键字搜索自动化截图生成文件【完美截图】

    前言:为了避免开发人员将敏感信息写入文件传到github,所以测试人员需要检查每个仓库是否有写入,人工搜索审核比较繁琐,所以写一个脚本通过配置 配置文件,指定需要搜索的仓库和每个仓库需要搜索的关键字, ...

  9. requestAnimationFrame 执行机制探索

    1.什么是 requestAnimationFrame window.requestAnimationFrame() 告诉浏览器--你希望执行一个动画,并且要求浏览器在下次重绘之前调用指定的回调函数更 ...

  10. [源码解析] PyTorch 分布式(4)------分布式应用基础概念

    [源码解析] PyTorch 分布式(4)------分布式应用基础概念 目录 [源码解析] PyTorch 分布式(4)------分布式应用基础概念 0x00 摘要 0x01 基本概念 0x02 ...