题意(中问题直接粘吧)
矩形面积

Problem Description

小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。

 

Input

第一行一个正整数 T,代表测试数据组数(1≤T≤20),接下来 T 组测试数据。

每组测试数据占若干行,第一行一个正整数 N(1≤N<≤1000),代表矩形的数量。接下来 N 行,每行 8 个整数x1,y1,x2,y2,x3,y3,x4,y4,代表矩形的四个点坐标,坐标绝对值不会超过10000。

 

Output

对于每组测试数据,输出两行:

第一行输出"Case #i:",i 代表第 i 组测试数据。

第二行包含1 个数字,代表面积最小的矩形的面积,结果保留到整数位。

 

Sample Input

2

2

5 10 5 8 3 10 3 8

8 8 8 6 7 8 7 6

1

0 0 2 2 2 0 0 2

 

Sample Output

Case #1:

17

Case #2:

4

思路:

      矩形不是凸出来的东西,吐出来的部分肯定是点,怎么连接边都在点连线的里面,这样就是求n*4个点的最小矩形覆盖面积,直接来个模板就行了,一开始用自己以前写的一个三分的方法来旋转角度去求,一直wa,感觉那个只能求正方形吧,这个是在网上找的,还有第一次暴栈了,记得加上外挂开战的那个东西。



#pragma comment(linker, "/STACK:1024000000,1024000000")

#include<math.h>
#include<stdio.h>
#include<string.h>
#include<algorithm> using namespace std; typedef double typev;
const double eps = 1e-8;
const int N = 50005;
int sign(double d){
return d < -eps ? -1 : (d > eps);
}
struct point{
typev x, y;
point operator-(point d){
point dd;
dd.x = this->x - d.x;
dd.y = this->y - d.y;
return dd;
}
point operator+(point d){
point dd;
dd.x = this->x + d.x;
dd.y = this->y + d.y;
return dd;
}
}ps[N]; //int n, cn;
double dist(point d1, point d2){
return sqrt(pow(d1.x - d2.x, 2.0) + pow(d1.y - d2.y, 2.0));
}
double dist2(point d1, point d2){
return pow(d1.x - d2.x, 2.0) + pow(d1.y - d2.y, 2.0);
}
bool cmp(point d1, point d2){
return d1.y < d2.y || (d1.y == d2.y && d1.x < d2.x);
}
//st1-->ed1叉乘st2-->ed2的值
typev xmul(point st1, point ed1, point st2, point ed2){
return (ed1.x - st1.x) * (ed2.y - st2.y) - (ed1.y - st1.y) * (ed2.x - st2.x);
}
typev dmul(point st1, point ed1, point st2, point ed2){
return (ed1.x - st1.x) * (ed2.x - st2.x) + (ed1.y - st1.y) * (ed2.y - st2.y);
}
//多边形类
struct poly{
static const int N = 50005; //点数的最大值
point ps[N+5]; //逆时针存储多边形的点,[0,pn-1]存储点
int pn; //点数
poly() { pn = 0; }
//加进一个点
void push(point tp){
ps[pn++] = tp;
}
//第k个位置
int trim(int k){
return (k+pn)%pn;
}
void clear(){ pn = 0; }
};
//返回含有n个点的点集ps的凸包
poly graham(point* ps, int n){
sort(ps, ps + n, cmp);
poly ans;
if(n <= 2){
for(int i = 0; i < n; i++){
ans.push(ps[i]);
}
return ans;
}
ans.push(ps[0]);
ans.push(ps[1]);
point* tps = ans.ps;
int top = -1;
tps[++top] = ps[0];
tps[++top] = ps[1];
for(int i = 2; i < n; i++){
while(top > 0 && xmul(tps[top - 1], tps[top], tps[top - 1], ps[i]) <= 0) top--;
tps[++top] = ps[i];
}
int tmp = top; //注意要赋值给tmp!
for(int i = n - 2; i >= 0; i--){
while(top > tmp && xmul(tps[top - 1], tps[top], tps[top - 1], ps[i]) <= 0) top--;
tps[++top] = ps[i];
}
ans.pn = top;
return ans;
}
//求点p到st->ed的垂足,列参数方程
point getRoot(point p, point st, point ed){
point ans;
double u=((ed.x-st.x)*(ed.x-st.x)+(ed.y-st.y)*(ed.y-st.y));
u = ((ed.x-st.x)*(ed.x-p.x)+(ed.y-st.y)*(ed.y-p.y))/u;
ans.x = u*st.x+(1-u)*ed.x;
ans.y = u*st.y+(1-u)*ed.y;
return ans;
}
//next为直线(st,ed)上的点,返回next沿(st,ed)右手垂直方向延伸l之后的点
point change(point st, point ed, point next, double l){
point dd;
dd.x = -(ed - st).y;
dd.y = (ed - st).x;
double len = sqrt(dd.x * dd.x + dd.y * dd.y);
dd.x /= len, dd.y /= len;
dd.x *= l, dd.y *= l;
dd = dd + next;
return dd;
}
//求含n个点的点集ps的最小面积矩形,并把结果放在ds(ds为一个长度是4的数组即可,ds中的点是逆时针的)中,并返回这个最小面积。
double getMinAreaRect(point* ps, int n, point* ds){
int cn, i;
double ans;
point* con;
poly tpoly = graham(ps, n);
con = tpoly.ps;
cn = tpoly.pn;
if(cn <= 2){
ds[0] = con[0]; ds[1] = con[1];
ds[2] = con[1]; ds[3] = con[0];
ans=0;
}else{
int l, r, u;
double tmp, len;
con[cn] = con[0];
ans = 1e40;
l = i = 0;
while(dmul(con[i], con[i+1], con[i], con[l])
>= dmul(con[i], con[i+1], con[i], con[(l-1+cn)%cn])){
l = (l-1+cn)%cn;
}
for(r=u=i = 0; i < cn; i++){
while(xmul(con[i], con[i+1], con[i], con[u])
<= xmul(con[i], con[i+1], con[i], con[(u+1)%cn])){
u = (u+1)%cn;
}
while(dmul(con[i], con[i+1], con[i], con[r])
<= dmul(con[i], con[i+1], con[i], con[(r+1)%cn])){
r = (r+1)%cn;
}
while(dmul(con[i], con[i+1], con[i], con[l])
>= dmul(con[i], con[i+1], con[i], con[(l+1)%cn])){
l = (l+1)%cn;
}
tmp = dmul(con[i], con[i+1], con[i], con[r]) - dmul(con[i], con[i+1], con[i], con[l]);
tmp *= xmul(con[i], con[i+1], con[i], con[u]);
tmp /= dist2(con[i], con[i+1]);
len = xmul(con[i], con[i+1], con[i], con[u])/dist(con[i], con[i+1]);
if(sign(tmp - ans) < 0){
ans = tmp;
ds[0] = getRoot(con[l], con[i], con[i+1]);
ds[1] = getRoot(con[r], con[i+1], con[i]);
ds[2] = change(con[i], con[i+1], ds[1], len);
ds[3] = change(con[i], con[i+1], ds[0], len);
}
}
}
return ans+eps;
} int main ()
{
int t ,n ,i ,NN ,cas = 1;
point ds[10];
scanf("%d" ,&t);
while(t--)
{
scanf("%d" ,&NN);
int n = 0;
for(i = 1 ;i <= NN ;i ++)
{
for(int j = 1 ;j <= 4 ;j ++)
{
scanf("%lf %lf" ,&ps[n].x ,&ps[n].y);
n++;
}
}
double ans = getMinAreaRect(ps ,n ,ds);
printf("Case #%d:\n" ,cas ++);
printf("%.0lf\n" ,ans);
}
return 0;
}

hdu5251最小矩形覆盖的更多相关文章

  1. [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖

    旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...

  2. bzoj 1185 旋转卡壳 最小矩形覆盖

    题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...

  3. 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solve ...

  4. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  5. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  6. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

  7. 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)

    [BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...

  8. LG3187 [HNOI2007]最小矩形覆盖

    题意 题目描述 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点坐标 输入输出格式 输入格式: 第一行为一个整数n(3<=n<=50000),从第2至第 ...

  9. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

随机推荐

  1. 14. vue源码入口+项目结构分析

    一. vue源码 我们安装好vue以后, 如何了解vue的的代码结构, 从哪里下手呢? 1.1. vue源码入口 vue的入口是package.json 来分别看看是什么含义 dependences: ...

  2. 过多if - else 的问题, 以及策略模式 + 反射解决方法

    策略模式解决if - else 的代码 业务场景: 外包企业的审批人需要审批打卡的场景: 审批人分为多种不同的级别,多种级别中具有方式相同但是内容不同的操作:审批. 原来场景: 有前端传来审批人参数, ...

  3. BeetleX使用bootstrap5开发SPA应用

        在早期版本BeetleX.WebFamily只提供了vuejs+element的集成,由于element只适合PC管理应用开发相对于移动应用适配则没这么方便.在新版本组件集成了bootstra ...

  4. css3中的渐变效果

    大家好,这里是demo软件园,今天为大家分享的是css3中的渐变效果. css3中的渐变需要注意的是渐变的是图片而不是颜色,而渐变又分为两种:线性渐变与径向渐变,今天我们重点介绍的是线性渐变. 1.线 ...

  5. 2019HDU多校第七场 HDU6646 A + B = C 【模拟】

    一.题目 A + B = C 二.分析 比较考验码力的题. 对于$c$,因为首位肯定不为0,那么$a$或者$b$至少有一个最高位是和$c$平齐的,或者少一位(相当于$a$+$b$进位得到). 那么这里 ...

  6. javaIO中的序列化和反序列化

    javaIO中的序列化和反序列化 1.什么是序列化?它是来解决什么问题的 1.我们创建的对象,一般情况下在内存中,程序关闭,或者因为没有地址指向而导致垃圾回收 2.这样,我们的对象就会丢失 3.那么我 ...

  7. 使用C# (.NET Core) 实现模板方法模式 (Template Method Pattern)

    本文的概念内容来自深入浅出设计模式一书. 项目需求 有一家咖啡店, 供应咖啡和茶, 它们的工序如下: 咖啡: 茶: 可以看到咖啡和茶的制作工序是差不多的, 都是有4步, 其中有两步它们两个是一样的, ...

  8. css盒模型以及如何计算盒子的宽度

    css盒模型以及如何计算盒子的宽度 盒模型 每个存在于可访问性树中的元素都会被浏览器绘制成一个盒子[1]. 每个盒子都可以看成由4部分组成,它们分别是 - 元素外边距(margin).元素边框(bor ...

  9. day-08-文件管理

    文件的操作的初识 利用python代码写一个很low的软件,去操作文件. 文件路径:path 打开方式:读,写,追加,读写,写读...... 编码方式:utf-8,gbk ,gb2312...... ...

  10. BUAA_2021_SE_Pair_Work_#3_Review

    结对项目第三阶段博客 项目 内容 这个作业属于哪个课程 2021春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目-第三阶段 我在这个课程的目标是 通过课程学习,完成第一个可以称之为 ...