首先是官方给的定以(我是用的VsCode,鼠标放置在tile上出现的),建议直接看后面的示例。
 
def tile(A, reps)

Construct an array by repeating A the number of times given by reps.

If reps has length d, the result will have dimension of max(d, A.ndim).

If A.ndim < dA is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A to d-dimensions manually before calling this function.

If A.ndim > dreps is promoted to A.ndim by pre-pending 1's to it. Thus for an A of shape (2, 3, 4, 5), a reps of (2, 2) is treated as (1, 1, 2, 2).

Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy's broadcasting operations and functions.

Parameters

A : array_like

The input array.

reps : array_like

The number of repetitions of `A` along each axis.

Returns

c : ndarray

The tiled output array.

See Also

repeat : Repeat elements of an array. broadcast_to : Broadcast an array to a new shape

Examples

a = np.array([0, 1, 2])

np.tile(a, 2)     /*列(水平方向)重复2次 */

array([0, 1, 2, 0, 1, 2])

这里的可以理解为a向右复制,同理,理解为a向下复制。复制次数包括本身(即2为复制1次,加上原来的为2个)。

当参数仅1个时候(如上),默认水平方向复制。

当参数为2个时候(如下),则第一个表示行(垂直方向)复制,第二个表示会列(水平方向)复制。

np.tile(a, (3, 2))    /*行(垂直方向)重复3次,列(水平方向)重复2次*/

array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2],

          [0, 1, 2, 0, 1, 2]])
Note: 1或者2参数时候可以以上面的理解,下面的就不太适合了。
 
 
下面这一个的话,从最右的开始往左,先是列(水平方向)重复2次,垂直方向不动,然后整体的二维复制一下(不知道方向了);下面再举一个对应的例子

np.tile(a, (2, 1, 2))  /*这个目前也不太理解,应该是超平面,大于三维时候*/

array([[[0, 1, 2, 0, 1, 2]],

          [[0, 1, 2, 0, 1, 2]]])

np.tile(a, (2, 1, 2))

array([[[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]],

           [[0, 1, 2, 0, 1, 2],
            [0, 1, 2, 0, 1, 2]]])
 
 
 
当参数仅1个时候(如下),默认水平方向复制。整个b向右(水平方向)复制。

b = np.array([[1, 2], [3, 4]])

np.tile(b, 2)

array([[1, 2, 1, 2],

          [3, 4, 3, 4]])
 
当参数为2个时候(如下),则第一个表示行(垂直方向)复制2次,第二个表示会列(水平方向)复制1次(1次即保持原型)。

np.tile(b, (2, 1))

array([[1, 2],

          [3, 4], 
          [1, 2], 
          [3, 4]])
 
 

c = np.array([1,2,3,4])

np.tile(c,(4,1))

array([[1, 2, 3, 4],

          [1, 2, 3, 4], 
          [1, 2, 3, 4], 
          [1, 2, 3, 4]])
 
 
PS: 上述仅为个人理解以及记录,如能帮助到你,很开心,如有错误也烦请指正。
 
 

Python--numpy中的tile()函数的更多相关文章

  1. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  2. numpy中的tile函数

    tile()函数可以很方便的生成多维数组.它有两个参数,第一个数是原始数组;第二个表示如何来生成,第一个数字表示生成几行,第二个表示每行有多少个原始数组(如果只写一个数字,那么就默认是一行). fro ...

  3. Python数据分析--Numpy常用函数介绍(5)--Numpy中的相关性函数

    摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票 ...

  4. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  5. 在python&numpy中切片(slice)

     在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就 ...

  6. 转载 为什么print在Python 3中变成了函数?

    转载自编程派http://codingpy.com/article/why-print-became-a-function-in-python-3/ 原作者:Brett Cannon 原文链接:htt ...

  7. python 中的tile函数,shape函数,sum函数

    1.tile函数: tile函数是模板numpy.lib.shape_base中的函数.函数的形式是tile(A,reps) A的类型几乎所有类型都可以:array, list, tuple, dic ...

  8. Python numpy 中常用的数据运算

    Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计 ...

  9. 嵌入Python系列 | 调用Python模块中无参数函数

    开发环境 Python版本:3.6.4 (32-bit) 编辑器:Visual Studio Code C++环境:Visual Studio 2013 需求说明 在用VS2013编写的Win32程序 ...

  10. Numpy中扁平化函数ravel()和flatten()的区别

    在Numpy中经常使用到的操作由扁平化操作,Numpy提供了两个函数进行此操作,他们的功能相同,但在内存上有很大的不同. 先来看这两个函数的使用: from numpy import * a = ar ...

随机推荐

  1. H. Subsequences (hard version) dp

    H. Subsequences (hard version) 这个题目好难啊,根本就不知道怎么dp,看了题解,理解了好一会才会的. 首先dp[i][j] 表示前面 i  个字符,形成长度为 j  的不 ...

  2. LeetCode--Array--Two sum (Easy)

    1.Two sum (Easy)# Given an array of integers, return indices of the two numbers such that they add u ...

  3. 你应该知道的Python3.6、3.7、3.8新特性

    很多人在学习了基本的Python语言知识后,就转入应用阶段了,后期很少对语言本身的新变化.新内容进行跟踪学习和知识更新,甚至连已经发布了好几年的Python3.6的新特性都缺乏了解. 本文列举了Pyt ...

  4. [hdu5379 Mahjong tree]dfs计数

    题意:给n个节点的树编号1-n,一个节点唯一对应一种编号,要求编完号的树满足如下性质:所有节点的儿子的编号是连续的,对一棵子树,它包含的所有节点的编号也是连续的.连续的意思是把所有数排序后是一段连续的 ...

  5. [hdu4763]next数组的应用

    http://acm.hdu.edu.cn/showproblem.php?pid=4763 题目大意:给一个字符串,判断是否可以写成ABACA,B.C表示长度大于等于0的字符串. 方法:ans = ...

  6. etcd实现服务发现

    前言 etcd环境安装与使用文章中介绍了etcd的安装及v3 API使用,本篇将介绍如何使用etcd实现服务发现功能. 服务发现介绍 服务发现要解决的也是分布式系统中最常见的问题之一,即在同一个分布式 ...

  7. 08JAVA基础关键字(final、static)以及抽象类和接口

    一.关键字 1.final 修饰类 修饰变量 修饰成员方法 该类为最终类,不能被继承 该变量为常量 该成员方法不能被重写 2.static (1).生命周期 随着类的加载而加载 (2).特点 被本类所 ...

  8. 性能测试之数据库监控分析工具Grafana+Prometheus

    使用到 Grafana+Prometheus+Mysql_exportor 使用Prometheus和Grafana,可以快速的构建我们性能测试的绝大多数的监控模型:数据库监控.服务器监控.Jvm监控 ...

  9. SQLServer用with temptb AS临时表查询或者更新字段,将某个字段赋值成某个字段的值

    with temptb AS(SELECT sl.CompanyID,info.BID FROM dbo.TableXXXXX   slLEFT JOIN dbo.Tableinfo  infoON ...

  10. iOS中的系统目录(Documents、tmp、Library)、RunLoop的一些知识点

    学习内容 欢迎关注我的iOS学习总结--每天学一点iOS:https://github.com/practiceqian/one-day-one-iOS-summary 实现轮播图需要注意的地方 需要 ...