聪哥推荐的题目

区间修改和区间查询,但是此题新颖之处就在于他的区间修改不是个定值,而是从L 到 R 分别加 F1、F2、。。。Fr-l+1 (F为斐波那契数列)

想了一下之后,觉得用fib的前缀和来解决,每次做懒惰标记记录下当前区间是从哪个L开始加起的,敲了一半之后发现有问题,就跟上次遇到的懒惰标记问题一样,这是个覆盖性的懒惰标记,每次向下传递后,都要先清除孩子的,清除孩子的也有可能要清除son's son,所以要一直pushdown下去,否则就会错,但这样就会超时。

能不能有个累加型的标记让我不用pushdown呢,网上都用的什么二次剩余定理,实在不会

后来发现一个博客的做法相当精妙,利用了斐波那契的特性

我们知道 fib总是由两个两个往后推得  则

若当前 数列前两项 为 a 、b,则之后的必为  a+b a+2b 2a+3b 3a+5b

推完发现 只要知道前两项,后面的任意一项都可以马上出来,因为其系数也满足fib数列

令 K=1,0,1,1,2.。。Ki=Ki-1+Ki-2,。

再令 F=0,1,1,2,3.。。为普通fib数列

则知道 前两项为 a,b,可推算出任意一项 n=Kn*a+Gn*b;

同理,我们可以推算出来,知道前两项后,前n项的总和为

Fn*a+Sn*b(S为fib的前缀和)。

这样的话,我只要每次懒惰标记当前区间的前两项,向下传递就会马上得到区间的加值,并且传递给左右孩子的时候,能根据右孩子的区间不同,马上把前两项变为适合右孩子的那两项。。。最重要的是,这个前两项支持累加,也就是累加型懒惰标记,不用彻底向下传递,这真的是极好的

#include <iostream>
#include <cstdio>
#include <cstring>
#define LL __int64
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
const LL M=;
const int N=+;
LL F[N],K[N],G[N],A[N];
int n,m;
LL d[N<<],f[N<<],f1[N<<],f2[N<<];
void init()
{
F[]=G[]=;
K[]=;
F[]=;
G[]=;
K[]=;
for (int i=;i<=n+;i++){
F[i]=F[i-]+F[i-];
K[i]=K[i-]+K[i-];
G[i]=G[i-]+F[i-];
if (F[i]>=M) F[i]%=M;
if (K[i]>=M) K[i]%=M;
if (G[i]>=M) G[i]%=M;
}
for (int i=;i<=n;i++) scanf("%d",&A[i]);
}
void up(int rt)
{
d[rt]=d[rt<<]+d[rt<<|];
if (d[rt]>=M) d[rt]%=M;
}
void build(int rt,int l,int r)
{
f[rt]=;
if (l>=r){
d[rt]=A[l]%M;
return;
}
int mid=(l+r)>>;
build(lson);
build(rson);
up(rt);
}
void fix(LL v1,LL v2,int L,int R,int rt,int l,int r);
void pushdown(int rt,int l,int r)
{
if (l>=r) return;
if (!f[rt]) return;
int mid=(l+r)>>;
fix(f1[rt],f2[rt],l,mid,lson); LL t1=K[mid-l+]*f1[rt]%M+K[mid-l+]*f2[rt]%M;
LL t2=K[mid-l+]*f1[rt]%M+K[mid-l+]*f2[rt]%M;
if (t1>=M) t1%=M;
if (t2>=M) t2%=M;
fix(t1,t2,mid+,r,rson);
f[rt]=; }
void fix(LL v1,LL v2,int L,int R,int rt,int l,int r)
{
if (L==l && r==R){ //采用这种锁定区间的方法是因为下面有个地方要用L计算,我之前的那种写法会出错
d[rt]+=(v1*F[R-L+]%M+G[R-L+]*v2%M)%M;
if (d[rt]>=M) d[rt]%=M;
if (!f[rt]){
f1[rt]=v1%M;
f2[rt]=v2%M;
f[rt]=;
}
else{
f1[rt]+=v1%M;
f2[rt]+=v2%M;
if (f1[rt]>=M) f1[rt]%=M;
if (f2[rt]>=M) f2[rt]%=M;
}
return;
}
int mid=(l+r)>>;
pushdown(rt,l,r);
if (R<=mid) fix(v1,v2,L,R,lson);
else if (L>mid) fix(v1,v2,L,R,rson);
else {
fix(v1,v2,L,mid,lson);
LL t1=K[mid-L+]*v1%M+K[mid-L+]*v2%M;//这里L要进行计算,每个孩子对应唯一L,所以为什么我要采用这种锁定区间的方式,就是因为这里。以前以为两种锁定区间的方法差不多,现在找到区别了,如果只是简单为了锁定区间,两种都可以用,但是当区间要作为计算条件的时候,要采取这种方法避免错误
LL t2=K[mid-L+]*v1%M+K[mid-L+]*v2%M;
if (t1>=M) t1%=M;
if (t2>=M) t2%=M;
fix(t1,t2,mid+,R,rson);
}
up(rt);
}
LL query(int L,int R,int rt,int l,int r)
{
if (L<=l && r<=R){
return d[rt]%M;
}
pushdown(rt,l,r);
int mid=(l+r)>>;
LL ret1=,ret2=;
if (L<=mid) ret1=query(L,R,lson);
if (R>mid) ret2=query(L,R,rson);
return (ret1+ret2)%M;
}
int main()
{
int op,a,b;
while (scanf("%d%d",&n,&m)!=EOF)
{
init();
build(,,n);
while (m--)
{
scanf("%d%d%d",&op,&a,&b);
if (op==){
fix(,,a,b,,,n);
}
else{
LL ans=query(a,b,,,n);
printf("%I64d\n",ans);
}
}
}
return ;
}

Codeforces 446C 线段树 递推Fibonacci公式的更多相关文章

  1. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  2. codeforces 447E or 446C 线段树 + fib性质或二次剩余性质

    CF446C题意: 给你一个数列\(a_i\),有两种操作:区间求和:\(\sum_{i=l}^{r}(a[i]+=fib[i-l+1])\).\(fib\)是斐波那契数列. 思路 (一) codef ...

  3. Codeforces 719E (线段树教做人系列) 线段树维护矩阵

    题面简洁明了,一看就懂 做了这个题之后,才知道怎么用线段树维护递推式.递推式的递推过程可以看作两个矩阵相乘,假设矩阵A是初始值矩阵,矩阵B是变换矩阵,求第n项相当于把矩阵B乘了n - 1次. 那么我们 ...

  4. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  5. Codeforces 316E3 线段树 + 斐波那切数列 (看题解)

    最关键的一点就是 f[ 0 ] * a[ 0 ] + f[ 1 ] * a[ 1 ] + ... + f[ n - 1] * a[ n  - 1] f[ 1 ] * a[ 0 ] + f[ 2 ] * ...

  6. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组

    Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...

  7. Please, another Queries on Array? CodeForces - 1114F (线段树,欧拉函数)

    这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知 ...

  8. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  9. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

随机推荐

  1. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 图片:将图片变为圆形 (IE8 不支持)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. java 根据传入的时间获取当前月的第一天的0点0分0秒和最后一天的23点59分59秒

    /** * 获取指定日期所在月份开始的时间 * lkeji * @return */ public static String getMonthBegin(String specifiedDay) { ...

  3. 网络OSI七层模型及各层作用 与 TCP/IP

    背景 虽然说以前学习计算机网络的时候,学过了,但为了更好地学习一些物联网协议(MQTT.CoAP.LWM2M.OPC),需要重新复习一下. OSI七层模型 七层模型,亦称OSI(Open System ...

  4. Jmockit如何同时mock多个类的静态方法

    使用Jmockit来mock类的静态方法,网上有很多mock单个类静态方法的例子.有使用Expectations,还有使用MockUp的. 但是如果想在一个测试方法中mock多个类的静态方法,该怎么写 ...

  5. HiBench成长笔记——(6) HiBench测试结果分析

    Scan Join Aggregation Scan Join Aggregation Scan Join Aggregation Scan Join Aggregation Scan Join Ag ...

  6. liunx mysql 5.7 二进制安装

    liunx 5.6版本 本人安装次数不下20次,基本上按照正常的操作流程不会出现什么问题,一切顺利. 今天开发新项目需要按照mysql 5.7 版本.mysql 5.7版本和mysql 5.6版本变化 ...

  7. jsp获取web的跟路径

    我实现了一个listener,此listener在tomcat启动的时候读取项目的配置文件,配置文件是xml.但是读取解析的功能是在另一个工具类实现的. 这个普通的工具类B,如何获取到当前web的跟路 ...

  8. SpringBoot---条件(th:if)

    Thymeleaf 的条件判断是 通过 th:if 来做的,只有为真的时候,才会显示当前元素 <p th:if="${testBoolean}" >如果testBool ...

  9. input中name和id的区别

    一直很困惑,表单里面input标签有id和name,它们之间到底有什么区别自己很少去想,只知道一般的场景该怎么使用,今天就在网上搜索了一下,自己也总结一下.为什么有了ID还要有Name呢?其实ID就像 ...

  10. gulp和npm等安装

    提前安装了node.js, https://nodejs.org/zh-cn/download/ 跟着提示安装就行,然后执行一下命令cdm看下版本号如下图就说明安装成功了 安装包里面集成了npm,然后 ...