https://www.luogu.org/problem/P2967

https://ac.nowcoder.com/acm/contest/1077/B

题目描述

Farmer John's cows love their video games! FJ noticed that after playing these games that his cows produced much more milk than usual, surely because contented cows make more milk.
The cows disagree, though, on which is the best game console. One cow wanted to buy the Xbox 360 to play Halo 3; another wanted to buy the Nintendo Wii to play Super Smash Brothers Brawl; a third wanted to play Metal Gear Solid 4 on the PlayStation 3. FJ wants to purchase the set of game consoles (no more than one each) and games (no more than one each -- and within the constraints of a given budget) that helps his cows produce the most milk and thus nourish the most children.
FJ researched N (1 <= N <= 50) consoles, each with a console price Pi (1 <= Pi <= 1000) and a number of console-specific games Gi (1 <= Gi <= 10). A cow must, of course, own a console before she can buy any game that is specific to that console. Each individual game has a game price GPj (1 <= GPj price <= 100) and a production value (1 <= PVj <= 1,000,000), which indicates how much milk a cow will produce after playing the game. Lastly, Farmer John has a budget V (1 <= V <= 100,000) which is the maximum amount of money he can spend. Help him maximize the sum of the production values of the games he buys.
 
Consider one dataset with N=3 consoles and a V=$800 budget. The first console costs $300 and has 2 games with cost $30 and $25 and production values as shown:
Game # Cost Production Value
1 $30 50
2 $25 80 The second console costs $600 and has only 1 game:
Game # Cost Production Value
1 $50 130 The third console costs $400 and has 3 games:
Game # Cost Production Value
1 $40 70
2 $30 40
3 $35 60 Farmer John should buy consoles 1 and 3, game 2 for console 1, and games 1 and 3 for console 3 to maximize his expected production at 210:
Production Value
Budget: $800
Console 1 -$300
Game 2 -$25 80
Console 3 -$400
Game 1 -$40 70
Game 3 -$35 60
-------------------------------------------
Total: 0 (>= 0) 210

题意翻译

农夫约翰的奶牛们打游戏上瘾了!本来约翰是想要按照调教兽的做法拿她们去电击戒瘾的,可后来他发现奶牛们玩游戏之后比原先产更多的奶。很明显,这是因为满足的牛会产更多的奶。

但是,奶牛们因何者为最好的游戏主机而吵得不可开交。约翰想要在给定的预算内购入一些游戏平台和一些游戏,使他的奶牛们生产最多的奶牛以养育最多的小牛。

约翰考察了 N 种游戏主机,第 i 种主机的价格是 Pi,该主机有 Gi 个独占游戏。很明显,奶牛必须先买进一种游戏主机,才能买进在这种主机上运行的游戏。在每种主机中,游戏 j 的价格为 GPj

每头奶牛在玩了该游戏后的牛奶产量为PVj

农夫约翰的预算为 V。请帮助他确定应该买什么游戏主机和游戏,使得他能够获得的产出值的和最大。

样例说明 1

假设 现在有 N=3 种主机,预算为V=800。

第一种主机的售价为 300,并且有两款游戏:

游戏编号 GPj​ PVj
1 $30 50
2 $25 80

第二种主机的售价为 600,并且只有一款游戏:

游戏编号 GPj PVj​
1 $50 130

第二种主机的售价为 400,并且有三款游戏:

游戏编号 GPj PVj
1 $40 70
2 $30 40
3 $35 60

理想方案:

                              产量
预算: $800
主机 1 -$300
游戏 2 -$25 80
主机 3 -$400
游戏 1 -$40 70
游戏 3 -$35 60
-------------------------------------------
总和: 0 (≥ 0) 210

输入描述:

* Line 1: Two space-separated integers: N and V
* Lines 2..N+1: Line i+1 describes the price of and the games ?available for console i; it contains: Pi, Gi, and Gi pairs of space-separated integers GPj, PVj

输出描述:

* Line 1: The maximum production value that Farmer John can get with his budget.

示例1

输入


输出


 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <math.h>
const int INF=0x3f3f3f3f;
typedef long long LL;
const int mod=1e9+;
const double PI=acos(-);
const int maxn=;
using namespace std;
//ios::sync_with_stdio(false);
// cin.tie(NULL); int n,v;
int DP[][]; int main()
{
scanf("%d %d",&n,&v);
for(int i=;i<=n;i++)
{
int cost,num;
scanf("%d %d",&cost,&num);
for(int j=cost;j<=v;j++)
DP[i][j]=DP[i-][j-cost];//买了i个平台剩下j元 (j-cost)为买其他剩的钱
for(int k=;k<=num;k++)//遍历每种游戏
{
int a,b;
scanf("%d %d",&a,&b);
for(int j=v;j>=cost+a;j--)
DP[i][j]=max(DP[i][j],DP[i][j-a]+b);//一维01背包问题
}
for(int j=;j<=v;j++)
DP[i][j]=max(DP[i][j],DP[i-][j]);//重新判断一次,判断这个平台到底是买还是不买更值
}
printf("%d",DP[n][v]);
return ;
}

一些题解:

https://www.cnblogs.com/hkpls/p/9908869.html

https://ac.nowcoder.com/acm/contest/view-submission?submissionId=41148893

https://www.cnblogs.com/Xxzxx/p/11336946.html

https://www.cnblogs.com/pile8852/p/9280310.html

https://blog.csdn.net/weixin_33835690/article/details/93431150

[USACO09DEC]视频游戏的麻烦Video Game Troubles(DP)的更多相关文章

  1. P2967 [USACO09DEC]视频游戏的麻烦Video Game Troubles

    冲刺阶段的首篇题解! 题目链接:P2967 [USACO09DEC]视频游戏的麻烦Video Game Troubles: 题目概述: 总共N个游戏平台,金额上限V元,给出每个游戏平台的价钱和其上游戏 ...

  2. LG_2967_[USACO09DEC]视频游戏的麻烦Video Game Troubles

    题目描述 Farmer John's cows love their video games! FJ noticed that after playing these games that his c ...

  3. <USACO09DEC>视频游戏的麻烦Video Game Troublesの思路

    emm今天模拟赛的题.神奇地A了 #include<cstdio> #include<cstring> #include<iostream> #include< ...

  4. [Luogu2967] 视频游戏的麻烦Video Game Troubles

      农夫约翰的奶牛们游戏成瘾!本来约翰是想要按照调教兽的做法拿她们去电击戒瘾的,可是 后来他发现奶牛们玩游戏之后比原先产更多的奶.很明显,这是因为满足的牛会产更多的奶. 但是,奶牛们在哪个才是最好的游 ...

  5. 【USACO12JAN】视频游戏的连击Video Game Combos

    题目描述 Bessie is playing a video game! In the game, the three letters 'A', 'B', and 'C' are the only v ...

  6. [洛谷3041]视频游戏的连击Video Game Combos

    题目描述 Bessie is playing a video game! In the game, the three letters 'A', 'B', and 'C' are the only v ...

  7. [USACO12JAN]视频游戏的连击Video Game Combos(AC自动机+DP)

    Description 贝西正在打格斗游戏.游戏里只有三个按键,分别是“A”.“B”和“C”.游戏中有 N 种连击 模式,第 i 种连击模式以字符串 Si 表示,只要贝西的按键中出现了这个字符串,就算 ...

  8. [Luogu3041][USACO12JAN]视频游戏的连击Video Game Combos

    题面 sol 设\(f_{i,j}\)表示填了前\(i\)个字母,在\(AC\)自动机上跑到了节点\(j\)的最大得分.因为匹配需要暴跳\(fail\)所以预先把\(fail\)指针上面的匹配数传下来 ...

  9. 洛谷P3041 视频游戏的连击Video Game Combos [USACO12JAN] AC自动机+dp

    正解:AC自动机+dp 解题报告: 传送门! 算是个比较套路的AC自动机+dp趴,,, 显然就普普通通地设状态,普普通通地转移,大概就f[i][j]:长度为i匹配到j 唯一注意的是,要加上所有子串的贡 ...

随机推荐

  1. 2020/2/6 PHP编程学习

    今天把后台数据库处理好了,用了框架后真就是搬砖的一天..晚上继续刷题,明天把数据库处理完,这样一个商城框架就有了:

  2. BZOJ [Cqoi2017] 小Q的棋盘

    题解:枚举最后在哪里停止,然后剩下的步数/2 也就是找最大深度 枚举终止位置算是一种思路吧 #include<iostream> #include<cstdio> #inclu ...

  3. RK3399开发板Android镜像烧写之Windows系统映像烧写

    4.1.1 l RKTool  驱动安装(基于迅为iTOP-3399开发板)DriverAssitant_v4.5.zip 文件,打开 驱动安装成功,如下图: 注意事项:1.目前支持的操作系统包括:X ...

  4. JS基础——脚本位置、数据类型、函数作用域

    (一)脚本位置 JavaScript是嵌套到浏览器里的脚本语言:可放在3个位置: 1.写在头部(head里) <head>    <meta charset="UTF-8& ...

  5. python中ndarray和matrix

    1. 定义ndarray和matrix from numpy import * a = mat([[1,2],[3,4]]) b = mat([[5,6],[7,8]]) c = array([1,2 ...

  6. Element.shadowRoot

    Element.shadowRoot http://www.zhuyuntao.cn/shadow-dom的样式/ Shadow DOM的样式 我们已经可以使用原生的操作DOM的方式和使用模板的方式来 ...

  7. 动态类型识别&动态创建

    以下大部分内容摘自<windows程序设计 第2版> 王艳平 张铮 编著 动态类型识别:在程序运行过程中,辨别对象是否属于特定类的技术. 应用举例:函数辨别参数类型.需要针对对象的类编写特 ...

  8. eclipse环境配置,字体大小,代码智能提示,JSP页面默认字符集修改

    安装好JDK后,下载Java EE解压版eclipse 1.字体大小 Windows——>Preferences——>General——>Appearance——>Colors ...

  9. Python列出文件夹中的文件

    几乎所有的关于操作系统的内容可以在python 官方文档中找到:https://docs.python.org/3/library/os.html#module-os 其中os.path被单独列出:h ...

  10. 远程调用shell脚本文件和远程复制文件

    1.安装sshpass yum install sshpass 2.本地调用远程服务器的shell脚本文件: sshpass -p sa ssh root@192.168.56.105 -C &quo ...