用下面这个简单的迷宫图作为例子:

OXXXXXXX
OOOOOXXX
XOXXOOOX
XOXXOXXO
XOXXXXXX
XOXXOOOX
XOOOOXOO
XXXXXXXO

O为通路,X为障碍物。

深度优先搜索就像是一条路走到黑,走到黑,黑了再回来。有种递归的感觉。

深度优先搜索(DFS)

 #include<iostream>
using namespace std; char a1[] = {'O','X','X','X','X','X','X','X','\0'};
char a2[] = {'O','O','O','O','O','X','X','X','\0'};
char a3[] = {'X','O','X','X','O','O','O','X','\0'};
char a4[] = {'X','O','X','X','O','X','X','O','\0'};
char a5[] = {'X','O','X','X','X','X','X','X','\0'};
char a6[] = {'X','O','X','X','O','O','O','X','\0'};
char a7[] = {'X','O','O','O','O','X','O','O','\0'};
char a8[] = {'X','X','X','X','X','X','X','O','\0'};
char *p[] = {a1, a2, a3, a4, a5, a6, a7, a8}; int offset[][] = {{-, }, {, }, {, -}, {, }};  //偏移量为一位大小,顺序为:上(x-1)、下(x+1)、左(y-1)、右(y+1) void DFS(int x, int y)
{
if(x == && y == )   //找到出口
{
p[x][y] = '*';
cout << "One path of the maze:" << endl;
for(int i = ; i < ; i++)
cout << p[i] << endl;
cout << endl;
}
for(int i = ; i < ; i++)  //寻找可行的路径
{
int nx = x + offset[i][];  //试探可走路径,下一位置为当前位置加上偏移量
int ny = y + offset[i][];
if(nx>= && nx<= && ny>= && ny<= && p[nx][ny]!='X' && p[nx][ny]!='*')  //找到可行路径
{
p[x][y] = '*';  //画出路径
DFS(nx, ny);  //继续搜索
p[x][y] = 'O';  //走不下去了回退
}
}
} int main()
{
cout << "The size of the maze: row 8, col 8" << endl;
cout << "The map: " << endl;
for(int i = ; i < ; i++)
cout << p[i] << endl; DFS(, );
return ;
}

广度优先搜索则是遍历与当前位置相邻的所有可行点,就像是病毒,传播速度很快。一传十,十传百的感觉。
求解时需要与队列相结合。

广度优先搜索(BFS)

 #include<iostream>
#include<cstring>
using namespace std; char a1[] = {'O','X','X','X','X','X','X','X','\0'};
char a2[] = {'O','O','O','O','O','X','X','X','\0'};
char a3[] = {'X','O','X','X','O','O','O','X','\0'};
char a4[] = {'X','O','X','X','O','X','X','O','\0'};
char a5[] = {'X','O','X','X','X','X','X','X','\0'};
char a6[] = {'X','O','X','X','O','O','O','X','\0'};
char a7[] = {'X','O','O','O','O','X','O','O','\0'};
char a8[] = {'X','X','X','X','X','X','X','O','\0'};
char *p[] = {a1, a2, a3, a4, a5, a6, a7, a8}; int offset[][] = {{-, }, {, }, {, -}, {, }};
int vis[][]; //用来标记是否访问过当前位置
int cnt = ; struct Position{
int x, y; //当前位置
int pre; //前驱点
}path[*], myqueue[*]; void BFS()
{
memset(vis, , sizeof(vis));
int front = , rear = ; myqueue[rear].x = ; //入口入队
myqueue[rear].y = ;
myqueue[rear].pre = -;
rear++; Position* tmp;
while(front < rear)
{
tmp = &myqueue[front]; //当前位置出队 if(tmp->x == && tmp->y == ) //到达出口
{
while(tmp->pre != -) //回溯寻找路径
{
path[cnt].x = tmp->x;  //记录可行路径的位置
path[cnt].y =tmp->y;
cnt++;
tmp = &myqueue[tmp->pre];
} for(int i = ; i < cnt; i++)  //在地图中可视化路径
{
p[][] = '*';
p[path[i].x][path[i].y] = '*';
}
cout << "One path of the maze:" << endl;
for(int i = ; i < ; i++)
cout << p[i] << endl;
cout << endl;
break;
} for(int i = ; i < ; i++) //遍历相邻点
{
int nx = tmp->x + offset[i][];  //试探路径
int ny = tmp->y + offset[i][];
if(nx>= && nx<= && ny>= && ny<= && p[nx][ny]!='X' && vis[nx][ny]!=) //满足条件入队
{
vis[nx][ny] = ;
myqueue[rear].x = nx;
myqueue[rear].y = ny;
myqueue[rear].pre = front;
rear++;
}
}
front++;
}
} int main()
{
cout << "The size of the maze: row 8, col 8" << endl;
cout << "The map: " << endl;
for(int i = ; i < ; i++)
cout << p[i] << endl; BFS();
return ;
}

这是一个只有一条通路的迷宫,具体要根据需求进行修改以满足。

深度优先搜索(DFS)和广度优先搜索(BFS)求解迷宫问题的更多相关文章

  1. 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)

    深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...

  2. 深度优先搜索DFS和广度优先搜索BFS简单解析

    转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...

  3. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

  4. 深度优先搜索DFS和广度优先搜索BFS

    DFS简介 深度优先搜索,一般会设置一个数组visited记录每个顶点的访问状态,初始状态图中所有顶点均未被访问,从某个未被访问过的顶点开始按照某个原则一直往深处访问,访问的过程中随时更新数组visi ...

  5. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

  6. 图的 储存 深度优先(DFS)广度优先(BFS)遍历

    图遍历的概念: 从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础.图的 ...

  7. 图的深度优先遍历(DFS)和广度优先遍历(BFS)

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  8. 【C++】基于邻接矩阵的图的深度优先遍历(DFS)和广度优先遍历(BFS)

    写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...

  9. 图的深度优先遍历(DFS)和广度优先遍历(BFS)算法分析

    1. 深度优先遍历 深度优先遍历(Depth First Search)的主要思想是: 1.首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点: 2.当没有未访问过的顶点时,则回 ...

  10. BFS求解迷宫的最短路径问题

    题目:给定一个大小为N*M的迷宫,迷宫由通道('.')和墙壁('#')组成,其中通道S表示起点,通道G表示终点,每一步移动可以达到上下左右中不是墙壁的位置.试求出起点到终点的最小步数.(本题假定迷宫是 ...

随机推荐

  1. Maven - Repository(存储库)

    版权所有,未经授权,禁止转载 章节 Maven – 简介 Maven – 工作原理 Maven – Repository(存储库) Maven – pom.xml 文件 Maven – 依赖管理 Ma ...

  2. 高级数据类型(arrary、slice、map、ptr)

    高级数据类型: 高级数据类型有数组.切片.map.指针.结构体.函数.接口.通道等,本文只介绍Arrary.Slice.map.ptr. 数组: (1)概念: 数组是同一种数据类型的集合.数组从声明时 ...

  3. 【转】pip升级不成功怎么办

    python -m pip install --upgrade pip -i https://pypi.douban.com/simple

  4. ArchLinux安装KDE桌面

    ArchLinux安装KDE桌面 一.链接网络 1.有线 # dhcpcd 2.无线 # wifi-menu 3.检查 # ping www.baidu.com 二.安装X服务 # pacman -S ...

  5. 使用util包里自带的接口和类实现观察者模式

    之前的关于观察者模式的文章,是用自己写的Observable接口和Observer接口,然后进行实现.其实官方的util包下自带有实现观察者模式对应的接口和类,可以简化我们的代码结构. 比如我们可以直 ...

  6. vector删除指定元素

    #pragma once #include "stdafx.h" #include<windows.h> #include <vector> #includ ...

  7. 再谈记忆化搜索 HDU-1078

    最近做DP题目,发现无论是LCS,还是有些题目涉及将动态规划的路径打印出来,而且有时候还要按格式输出,这个时候,记忆化搜索显得尤其重要,确实,记忆化搜索使用优化版本的动态规划,用起来思路清晰,非常方便 ...

  8. 使用Matplotlib

    1.Matplotlib是python的一个绘图库. 2.from matplotlib import pyplot as plt

  9. 普通java项目转换为带有Tomcat的动态Web项目

    原文链接:http://blog.csdn.net/l4432321/article/details/52049125 直接项目右键进入Properties配置,点击Project Facets,再点 ...

  10. 计算机网络(2): http的基础上用SSL或TSL加密

    加密过程具体TCP实现 步骤 1 : 客户端通过发送Client Hello报文开始SSL通信(这里是在TCP的三次握手已经完成的基础上进行的).报文中包含客户端支持的SSL的指定版本.加密组件列表( ...