广义线性模型

y是分类变量

Link function:将分类变量和数值变量放在一起

使用得到结果0 or 1的概率值来评估选0 or1

函数关系:

正比例函数:

logistics函数S型曲线:

Odds ratio反应事件发生的倾向性

logistics函数与probit regression function很像,但是logistics函数基于二项分布,probit regression function基于正态分布。

probit regression function:正态分布的累计概率曲线

logistics函数不需要独立+方差齐性+正态性。

p是怎么根据x变化的,求其偏导:

其中,α和β由之前的数据给定,由最大似然估计确定。

正态分布用样本估计总体,取两个点测试不同的假设均值,找到使得似然函数最大,具体就是列出似然函数对μ求导,令导数为零,即找到最大值。以此类推,可以取n个点。求方差也是同理,对SD求导。

最终结果是,

按照以上思路,而不是反求思路得到的图像是:

必须是总体正态分布,使用MLE估计参数,此时与最小二乘法等同。如果不是正态分布,则不同。

ANOVA, Pearson’s r, t-test, regression

使用广义线性模型得到的概率,将该概率放回原始数据中,计算其差值,该差值符合卡方分布。LR

评价拟合优度的指标:

AIC在相同数目的变量解释同一变量时才会有可比性。越小越好。

K的选择:如果增大K值是使得likehood变化很大,就要可取,但是如果增大K值是使得likehood变化很小,就不可取。

对于小数据,少于40,扁平化数据,没有充分的重复来解释规律,所以引入了一个修正。修改原始数据量的方法是扩大n减小k。

广义线性模型|logistics|Odds ratio|最大似然函数|LR|AIC|的更多相关文章

  1. Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

    (一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x), ...

  2. Machine Learning 学习笔记 (4) —— 广义线性模型

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 指数分布族简介 之前的文章分 ...

  3. 广义线性模型 GLM

    Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 ...

  4. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  5. R语言-广义线性模型

    使用场景:结果变量是类别型,二值变量和多分类变量,不满足正态分布  结果变量是计数型,并且他们的均值和方差都是相关的 解决方法:使用广义线性模型,它包含费正太因变量的分析 1.Logistics回归( ...

  6. 广义线性模型(Generalized Linear Models)

    在线性回归问题中,我们假设,而在分类问题中,我们假设,它们都是广义线性模型的例子,而广义线性模型就是把自变量的线性预测函数当作因变量的估计值.很多模型都是基于广义线性模型的,例如,传统的线性回归模型, ...

  7. 广义线性模型(GLM)

    一.广义线性模型概念 在讨论广义线性模型之前,先回顾一下基本线性模型,也就是线性回归. 在线性回归模型中的假设中,有两点需要提出: (1)假设因变量服从高斯分布:$Y={{\theta }^{T}}x ...

  8. 斯坦福CS229机器学习课程笔记 part3:广义线性模型 Greneralized Linear Models (GLMs)

    指数分布族 The exponential family 因为广义线性模型是围绕指数分布族的.大多数常用分布都属于指数分布族,服从指数分布族的条件是概率分布可以写成如下形式:η 被称作自然参数(nat ...

  9. 广义线性模型(Generalized Linear Models)

    前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...

随机推荐

  1. RecyclerView使用介绍

    来源 http://jinyudong.com/2014/11/13/Introduce-RecyclerView-%E4%B8%80/ 编辑推荐:稀土掘金,这是一个针对技术开发者的一个应用,你可以在 ...

  2. 05 GUI UGUI

    在Unity开发过程中,不论是3D还是2D开发都需要大量的UI界面来配合使用,用来达到更好的效果 GUI:在Unity脚本生命周期回调方法OnGUI中实现,每一帧渲染两次,在OnGUI中的GUI界面元 ...

  3. POJ 1502:MPI Maelstrom Dijkstra模板题

    MPI Maelstrom Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6499   Accepted: 4036 Des ...

  4. CTF -攻防世界-misc新手区

    此题flag题目已经告诉格式,答案很简单. 将附件下载后,将光盘挂到虚拟机启动 使用 strings linux|grep flag会找到一个O7avZhikgKgbF/flag.txt然后root下 ...

  5. SPOJ 247 chocolate (CHOCLO)

    题目http://www.spoj.com/problems/CHOCOLA/ 把一整块巧克力分成一个一个单元,掰断每一横行有个代价值,掰断每个纵行也有个代价值,要你求最后的总代价值最小 这个题目放在 ...

  6. potplayer记住播放进度

    (右键——选项)F5——播放——记忆视频播放位置

  7. 精准医疗|研发药物|Encode|roadmap|

    生物医学大数据 精准医疗 研发药物:特异性靶点&过表达靶点 Encode &roadmap找组织特异性的表观遗传学标记.TF.DNA甲基化的动态变化等信息. 生物大数据的标准化与整合- ...

  8. java 实现递归实现tree(2)

    import com.google.common.collect.Lists; import org.springframework.cglib.beans.BeanCopier; import ja ...

  9. 微信oauth2授权获得用户信息

    <?php session_start(); header("Content-type: text/html; charset=utf-8"); $home = 'index ...

  10. G6:AntV 的图可视化与图分析

    导读 G6 是 AntV 旗下的一款专业级图可视化引擎,它在高定制能力的基础上,提供简单.易用的接口以及一系列设计优雅的图可视化解决方案,是阿里经济体图可视化与图分析的基础设施.今年 AntV 11. ...