Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbered from 1 to m from left to right. The element in the i-th row and the j-th column is Aij.

Let M({i1, i2, ..., is}, {j1, j2, ..., jt}) be the matrix that results from deleting row i1, i2, ..., is and column j1, j2, ..., jt of A and f({i1, i2, ..., is}, {j1, j2, ..., jt}) be the number of saddle points in matrix M({i1, i2, ..., is}, {j1, j2, ..., jt}).

Chiaki would like to find all the value of f({i1, i2, ..., is}, {j1, j2, ..., jt}). As the output may be very large ((2n - 1)(2m - 1) matrix in total), she is only interested in the value

Note that a saddle point of a matrix is an element which is both the only largest element in its column and the only smallest element in its row.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains four integers n and m (1 ≤ nm ≤ 1000) -- the number of rows and the number of columns.

Each of the next n lines contains m integer Ai, 1, Ai, 2, ..., Aim (1 ≤ Aij ≤ 106), where Aij is the integer in the i-th row and the j-th column.

It is guaranteed that neither the sum of all n nor the sum of all m exceeds 5000.

Output

For each test case, output an integer denoting the answer.

Sample Input

2
2 2
1 1
1 1
4 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Sample Output

4
465 思路:saddle点的定义是行最小,列最大,那么我们就统计每一个点对saddle点的贡献,即这些点是saddle点的时候,去掉当前行比他大的列与当前列比他小的行对该点的贡献无影响,即是组合数从0到x,就是2^x,列同理,就是2^(x+y),快速幂+二分查找即可
typedef long long LL;

const int MOD = 1e9+;
const int maxm = ; int A[maxm][maxm], R[maxm][maxm], C[maxm][maxm]; LL quick_pow(LL a, LL b) {
LL ret = ;
while(b) {
if(b & ) ret = (ret * a) % MOD;
a = (a * a) % MOD;
b >>= ;
}
return ret;
} int main() {
int T, n, m;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
scanf("%d", &A[i][j]);
R[i][j] = C[j][i] = A[i][j];
}
for(int i = ; i <= n; ++i)
sort(R[i]+, R[i]+m+);
for(int i = ; i <= m; ++i)
sort(C[i]+, C[i]++n); LL ans = ;
int row, col;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
row = m-(upper_bound(R[i]+, R[i]++m, A[i][j]) - R[i] - ); // larger than A[i][j] in row
col = lower_bound(C[j]+, C[j]++n, A[i][j]) - C[j] - ; // lower than A[i][j] in column
ans = (ans+quick_pow(, col+row))%MOD;
}
}
printf("%lld\n", ans);
}
return ;
}

Day7 - C - Saddle Point ZOJ - 3955的更多相关文章

  1. Saddle Point ZOJ - 3955 题意题

    Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbe ...

  2. Saddle Point ZOJ - 3955(求每个值得贡献)

    题意: 给出一个矩阵,删掉一些行和列之后 求剩下矩阵的鞍点的总个数 解析: 对于每个点 我们可以求出来 它所在的行和列  有多少比它大的 设为a 有多少比它小的 设为b 然后对于那些行和列 都有两种操 ...

  3. ZOJ 3955:Saddle Point(思维)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3955 题意:给出一个n*m的矩阵,定义矩阵中的特殊点Aij当且仅当Aij是 ...

  4. ZOJ 3955 Saddle Point

    排序. 枚举每一个格子,计算这个格子在多少矩阵中是鞍点,只要计算这一行有多少数字比他大,这一列有多少数字比他小,方案数乘一下就是这个格子对答案做出的贡献. #include<bits/stdc+ ...

  5. ZOJ 3955 Saddle Point 校赛 一道计数题

    ZOJ3955 题意是这样的 给定一个n*m的整数矩阵 n和m均小于1000 对这个矩阵删去任意行和列后剩余一个矩阵为M{x1,x2,,,,xm;y1,y2,,,,,yn}表示删除任意的M行N列 对于 ...

  6. ZOJ Saddle Point 数学思维题

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5564   根据它的定义是行最小,列最大. 可以证明鞍点是唯一的. ...

  7. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  8. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  9. day7

    本节作业: 选课系统 角色:学校.学员.课程.讲师要求:1. 创建北京.上海 2 所学校2. 创建linux , python , go 3个课程 , linux\py 在北京开, go 在上海开3. ...

随机推荐

  1. 「快学springboot」集成Spring Security实现鉴权功能

    Spring Security介绍 Spring Security是Spring全家桶中的处理身份和权限问题的一员.Spring Security可以根据使用者的需要定制相关的角色身份和身份所具有的权 ...

  2. tf.reduce_max 与 reduce 系列 API

    reduce 可以理解为 python 里的 reduce 函数: tensorflow 中有很多 reduce_ API,其用法完全相同 tf.reduce_max 以这个为例进行说明 def re ...

  3. Java通过反射实现实例化

    public static void main(String[] args) throws Exception { User user= (User) test(User.class); System ...

  4. PAT T1005 Programming Pattern

    建立后缀数组,遍历height数组找到连续大于len的最长子序列~ #include<bits/stdc++.h> using namespace std; ; char s[maxn]; ...

  5. python开发接口

    享一段代码,开发了3个接口:            1.上传文件            2.查看所有文件            3.下载文件 使用python开发,需要安装flask模块,使用pip ...

  6. Linux 修改 .bashrc

    bashrc是一个隐藏的文件,要打开并修改该文件需要: (1)命令:ls -a 找到文件 .bashrc: (2) 命令 vim ~/.bashrc 进入到文件: (3) 直接按 i 键可以对文件进行 ...

  7. 解决EFCore缓存机制导致的数据查询错误问题

    如题,在对同一个Context连续进行相同条件的查询时,会触发EFCore的缓存机制,如果这个过程中数据发生了变化,则会出现错误. 例如:有两个Context实例,一个负责查询,一个负责增删改, A_ ...

  8. Java源码-集合-LinkedList

    基于JDK1.8.0_191 介绍   LinkedList是以节点来保存数据的,不像数组在创建的时候需要申请一段连续的空间,LinkedList里的数据是可以存放在不同的空间当中,然后以内存地址作为 ...

  9. Spring MVC原理解析

    SpringMVC Spring MVC的工作原理 ①客户端的所有请求都交给前端控制器DispatcherServlet来处理,它会负责调用系统的其他模块来真正处理用户的请求. ② Dispatche ...

  10. 本周总结(19年暑假)—— Part6

    日期:2019.8.18 博客期:112 星期日