Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbered from 1 to m from left to right. The element in the i-th row and the j-th column is Aij.

Let M({i1, i2, ..., is}, {j1, j2, ..., jt}) be the matrix that results from deleting row i1, i2, ..., is and column j1, j2, ..., jt of A and f({i1, i2, ..., is}, {j1, j2, ..., jt}) be the number of saddle points in matrix M({i1, i2, ..., is}, {j1, j2, ..., jt}).

Chiaki would like to find all the value of f({i1, i2, ..., is}, {j1, j2, ..., jt}). As the output may be very large ((2n - 1)(2m - 1) matrix in total), she is only interested in the value

Note that a saddle point of a matrix is an element which is both the only largest element in its column and the only smallest element in its row.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains four integers n and m (1 ≤ nm ≤ 1000) -- the number of rows and the number of columns.

Each of the next n lines contains m integer Ai, 1, Ai, 2, ..., Aim (1 ≤ Aij ≤ 106), where Aij is the integer in the i-th row and the j-th column.

It is guaranteed that neither the sum of all n nor the sum of all m exceeds 5000.

Output

For each test case, output an integer denoting the answer.

Sample Input

2
2 2
1 1
1 1
4 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Sample Output

4
465 思路:saddle点的定义是行最小,列最大,那么我们就统计每一个点对saddle点的贡献,即这些点是saddle点的时候,去掉当前行比他大的列与当前列比他小的行对该点的贡献无影响,即是组合数从0到x,就是2^x,列同理,就是2^(x+y),快速幂+二分查找即可
typedef long long LL;

const int MOD = 1e9+;
const int maxm = ; int A[maxm][maxm], R[maxm][maxm], C[maxm][maxm]; LL quick_pow(LL a, LL b) {
LL ret = ;
while(b) {
if(b & ) ret = (ret * a) % MOD;
a = (a * a) % MOD;
b >>= ;
}
return ret;
} int main() {
int T, n, m;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
scanf("%d", &A[i][j]);
R[i][j] = C[j][i] = A[i][j];
}
for(int i = ; i <= n; ++i)
sort(R[i]+, R[i]+m+);
for(int i = ; i <= m; ++i)
sort(C[i]+, C[i]++n); LL ans = ;
int row, col;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
row = m-(upper_bound(R[i]+, R[i]++m, A[i][j]) - R[i] - ); // larger than A[i][j] in row
col = lower_bound(C[j]+, C[j]++n, A[i][j]) - C[j] - ; // lower than A[i][j] in column
ans = (ans+quick_pow(, col+row))%MOD;
}
}
printf("%lld\n", ans);
}
return ;
}

Day7 - C - Saddle Point ZOJ - 3955的更多相关文章

  1. Saddle Point ZOJ - 3955 题意题

    Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbe ...

  2. Saddle Point ZOJ - 3955(求每个值得贡献)

    题意: 给出一个矩阵,删掉一些行和列之后 求剩下矩阵的鞍点的总个数 解析: 对于每个点 我们可以求出来 它所在的行和列  有多少比它大的 设为a 有多少比它小的 设为b 然后对于那些行和列 都有两种操 ...

  3. ZOJ 3955:Saddle Point(思维)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3955 题意:给出一个n*m的矩阵,定义矩阵中的特殊点Aij当且仅当Aij是 ...

  4. ZOJ 3955 Saddle Point

    排序. 枚举每一个格子,计算这个格子在多少矩阵中是鞍点,只要计算这一行有多少数字比他大,这一列有多少数字比他小,方案数乘一下就是这个格子对答案做出的贡献. #include<bits/stdc+ ...

  5. ZOJ 3955 Saddle Point 校赛 一道计数题

    ZOJ3955 题意是这样的 给定一个n*m的整数矩阵 n和m均小于1000 对这个矩阵删去任意行和列后剩余一个矩阵为M{x1,x2,,,,xm;y1,y2,,,,,yn}表示删除任意的M行N列 对于 ...

  6. ZOJ Saddle Point 数学思维题

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5564   根据它的定义是行最小,列最大. 可以证明鞍点是唯一的. ...

  7. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  8. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  9. day7

    本节作业: 选课系统 角色:学校.学员.课程.讲师要求:1. 创建北京.上海 2 所学校2. 创建linux , python , go 3个课程 , linux\py 在北京开, go 在上海开3. ...

随机推荐

  1. mysql cmmand not found

    https://www.cnblogs.com/yangzigege/p/8337393.html

  2. 进程fork

    fork用于父进程创建一个子进程 返回两次 返回-1表示错误 父进程中返回创建子进程的ID,大于0 返回0是表示进入子进程 创建的子进程会继承父进程的属性,比如打开的文件描述符.工作目录.根目录等等. ...

  3. 使用gcc编译c语言解码ascii码

    vi test.c 输入代码: #include<stdio.h> int main(void) { char *p = (char *)"\xE6\x8A\xB1\xE6\xA ...

  4. docker基础镜像ubuntu添加jdk1.8

    首先pull ubuntu18.04 docker pull ubuntu:18.04 下载jdk1.8 jdk-8u191-linux-x64.tar.gz 创建Dockerfile文件 编写文件如 ...

  5. 「Luogu P3168 [CQOI2015]任务查询系统」

    介绍本题的两种做法: 方法1 前置芝士 线段树:一个很重要的数据结构. 树状数组:一个很重要的数据结构. 具体实现 区间修改,单点查询很容易就会想到树状数组了,至于查询前k个数的和又可以丢给权值线段树 ...

  6. Codeforces1307D. Cow and Fields

    对于本题,最短路,考虑bfs,那么我们可以跑2次bfs,求出每个点到1与n的最短路,设为x_a, x_b,那我们可以把问题转换成max(min{x_a+y_b,x_b+y_a}+1)(x,y属于1到n ...

  7. Golang 如何交叉编译

    Golang 支持交叉编译,即在一个平台上生成另一个平台的可执行程序.方法如下: Mac 下编译 Linux 和 Windows 64位可执行程序 CGO_ENABLED=0 GOOS=linux G ...

  8. Lesson 12 banks and their customers

    Why is there no risk to the customer when a bank prints the customer's name on his cheques? When any ...

  9. redis之常见操作

    目录 redis的常见操作 1. redis客户端登录方式 2. 设置密码 3. 获取redis的配置 4. redis键(key) 语法 实例 Redis keys (黄色为重点) redis的常见 ...

  10. Python作业篇 day04

    ###一.写代码,有如下列表,按照要求实现每一个功能 li=['alex','bibi','cc0','didi'] #1.计算列表的长度 #2.列表中追加元素'seven',并输出添加后的列表 #3 ...