BG:在box-cox变换中,当λ = 0时即为对数变换。

当所分析变量的标准差相对于均值而言比较大时,这种变换特别有用。对数据作对数变换常常起到降低数据波动性和减少不对称性的作用。。这一变换也能有效消除异方差性

library(MASS)
library(openxlsx)
data= read.xlsx("data104.xlsx",sheet = 1) #导入数据
attach(data)

  

op<-par(mfrow=c(2,2),mar=0.4+c(4,4,1,1),oma=c(0,0,2,0)) #将四张图放在一起,调整边界。(以后也采用此行)
plot(size,effort) #图4-4(a)
plot(log(size),log(effort)) #图4-4(b)
#绘制频率分布直方图
hist(effort) #图4-5(a)
hist(size) #图4-5(b)

  

effor 和 size 这两个变量的频率分布图表明,它们并不满足正态分布。为了接近正态分布,必须变换这些变量(通过频率分布图判断变量是否满足正态分布)

1.先进行基本的线性回归,利用得到的模型进行box-cox变换

lm1=lm(effort~size+t14)  #拟合线性回归模型
summary(lm1)
#绘制残差图进行残差分析
plot(fitted(lm1),resid(lm1),cex=1.2,pch=21,col="red",bg="orange",xlab="Fitted value",ylab="Residuals")
boxcox(lm1,lambda=seq(0,1,by=0.1)) #进行box-cox变换

  

从残差图可以看到误差项不满足Gauss-Markov假设。

右图的Box-Cox变换建议问哦们λ可以取在[0.05,0.6]范围内,对投入工作量(effort) 取对数有一定的可信度(λ=0 几乎落在置信域内)

进行对数变换

lm2=lm(log(effort)~size+t14)
summary(lm2)
#绘制残差图
plot(fitted(lm2),resid(lm2),cex=1.2,pch=21,col="red",bg="orange",xlab="Fitted value",ylab="Residuals")

  

书上的结果时残差范围大致在[-25,40]内,不满足Gauss-Markov假设

与书上结果不符,上图参擦汗图表示这个模型是可行的。

2.试图拟合 effort 与 log(size),t14 的回归方程。

lm3=lm(effort~log(size)+t14)
summary(lm3)
#绘制残差图
plot(fitted(lm3),resid(lm3),cex=1.2,pch=21,col="red",bg="orange",xlab="Fitted value",ylab="Residuals")
#box-cox变换求λ
boxcox(lm3,lambda=seq(0,1,by=0.1))

  

根据右图,Box-Cox变换建议我们取 λ=0

建立如下方程 ln(effort) = β0 + β1ln(size) + β2 t14 + e

lm4=lm(log(effort)~log(size)+t14) #进行线性回归
summary(lm4)
#绘制残差图
plot(fitted(lm4),resid(lm4),cex=1.2,pch=21,col="red",bg="orange",xlab="Fitted value",ylab="Residuals")
#进行box-cox变换
boxcox(lm4,lambda=seq(0,1,by=0.1))

因为λ=1 包含在box-cox图像所示的置信域内,说明不进行变换也是ok的

而且通过残差分析,可以看出这个模型是合理的。

R 对数变换 《回归分析与线性统计模型》page103的更多相关文章

  1. R 《回归分析与线性统计模型》page120,4.3

    #P120习题4.3 rm(list = ls()) A = read.xlsx("xiti_4.xlsx",sheet = 3) names(A) = c("ord&q ...

  2. R 《回归分析与线性统计模型》page93.6

    rm(list = ls()) #数据处理 library(openxlsx) library(car) library(lmtest) data = read.xlsx("xiti4.xl ...

  3. R 《回归分析与线性统计模型》page164 单变量、多变量多项式模型

    --多项式回归模型 --单变量多项式模型 --多变量多项式模型 rm(list = ls()) library(openxlsx) library(leaps) #单变量多项式模型# data = r ...

  4. R 《回归分析与线性统计模型》page141,5.2

    rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data141.xlsx") ...

  5. R 《回归分析与线性统计模型》page140,5.1

    rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data140.xlsx") ...

  6. R 《回归分析与线性统计模型》page121,4.4

    rm(list = ls()) A = read.xlsx("xiti_4.xlsx",sheet = 4) names(A) = c("ord"," ...

  7. R 《回归分析与线性统计模型》page119,4.2

    rm(list = ls()) library(openxlsx) library(MASS) data = read.xlsx("xiti_4.xlsx",sheet = 2) ...

  8. R语言 线性回归分析实例 《回归分析与线性统计模型》page72

    y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%). (1) 建立线性模型: ① 自己编写函数: > librar ...

  9. R WLS矫正方差非齐《回归分析与线性统计模型》page115

    rm(list = ls()) A = read.csv("data115.csv") fm = lm(y~x1+x2,data = A) coef(fm) A.cooks = c ...

随机推荐

  1. jquery-ajax的用法

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. laravel 左联报错问题

  3. Solr搜索引擎服务器学习笔记

    Solr简介 采用Java5开发,基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能 ...

  4. Go的WaitGroup

    goroutine使用方便,但是如果不加以处理一般会deadlock,因为goroutine配合Chanel的话只能是一进一出,否则就会卡在那里.下面一个示例就是利用这个WaitGroup处理这种死锁 ...

  5. Linux 7 和 CentOS 7 收到重要内核安全更新

    导读 Red Hat 和 CentOS 宣布了其 Red Hat Enterprise Linux 7 和 CentOS Linux 7 操作系统系列重要内核安全更新的可用性. 据悉,这些更新解决了两 ...

  6. IDEA 在同一工作空间创建多个项目

    1.创建项目 二..创建工作空间 JavaWorkspace 1.File-> New Project -> 创建工作空间 JavaWorkspace,并 顺便创建项目 JavaOne 2 ...

  7. maven缺失ojdbc6解决方案 :Missing artifact com.oracle:ojdbc6:jar:11.2.0.1.0问题解决 ojdbc包pom.xml出错

    问题已解决,感谢博主,给您磕头了. | | 解决方法就是把缺少的 jar 手动添加到本地仓库中,再重新引入依赖即可.详情请参考以下链接. | | 转发自: https://blog.csdn.net/ ...

  8. 单表千亿电信大数据场景,使用Spark+CarbonData替换Impala案例

    [背景介绍] 国内某移动局点使用Impala组件处理电信业务详单,每天处理约100TB左右详单,详单表记录每天大于百亿级别,在使用impala过程中存在以下问题: 详单采用Parquet格式存储,数据 ...

  9. scrapy 开发流程

    一.Spider 开发流程 实现一个 Spider 子的过程就像是完成一系列的填空题,Scrapy 框架提出以下问题让用户在Spider 子类中作答: 1.爬虫从哪个或者那些页面开始爬取? 2.对于一 ...

  10. axios设置请求头失效的问题

    前言:因为在使用vue-element-admin框架时遇到了设置请求头失效的问题,在后来发现是代理跨域问题,所以又简单理解了一下跨域. 出现的问题是我在axios拦截器上设置了请求头token,但是 ...