softmax回归推导
向量\(y\)(为one-hot编码,只有一个值为1,其他的值为0)真实类别标签(维度为\(m\),表示有\(m\)类别):
\]
向量\(z\)为softmax函数的输入,和标签向量\(y\)的维度一样,为\(m\):
\]
向量\(s\)为softmax函数的输出,和标签向量\(y\)的维度一样,为\(m\):
\]
\]
交叉熵损失函数:
\]
损失函数对向量\(z\)中的每个\(z_i\)求偏导:
=-\sum_{j=1}^{m}\frac{y_j}{s_j}*\frac{\partial s_j}{\partial z_i}
\]
当j=i时:
=\frac{e^{z_i}*\sum_{k=1}^{m}e^{z_k}-e^{z_i}*e^{z_i}}{(\sum_{k=1}^{m}e^{z_k})^2}
=\frac{e^{z_i}}{\sum_{k=1}^{m}e^{z_k}}*\frac{\sum_{k=1}^{m}e^{z_k}-e^{z_i}}{\sum_{k=1}^{m}e^{z_k}}
=\frac{e^{z_i}}{\sum_{k=1}^{m}e^{z_k}}*(1-\frac{e^{z_i}}{\sum_{k=1}^{m}e^{z_k}})
=s_i*(1-s_i)
\]
当j!=i时:
=\frac{0*\sum_{k=1}^{m}e^{z_k}-e^{z_j}*e^{z_i}}{(\sum_{k=1}^{m}e^{z_k})^2}
=-\frac{e^{z_j}}{\sum_{k=1}^{m}e^{z_k}}*\frac{e^{z_i}}{\sum_{k=1}^{m}e^{z_k}}
=-s_js_i
\]
所以:
\]
损失函数对向量\(z\)中的每个\(z_i\)求偏导:
=-\sum_{j=1}^{m}\frac{y_j}{s_j}*\frac{\partial s_j}{\partial z_i}
=-(\frac{y_i}{s_i}*\frac{\partial s_i}{\partial z_i}+\sum_{j\neq{i}}^{m}\frac{y_j}{s_j}*\frac{\partial s_j}{\partial z_i})
=-(\frac{y_i}{s_i}*s_i(1-s_i)+\sum_{j\neq{i}}^{m}\frac{y_j}{s_j}*(-s_js_i))
\]
=-y_i+s_iy_i+\sum_{j\neq{i}}^{m}y_js_i
=-y_i+\sum_{j=1}^{m}y_js_i
=s_i-y_i
\]
softmax回归推导的更多相关文章
- Softmax回归推导过程
http://www.cnblogs.com/Deep-Learning/p/7073744.html http://www.cnblogs.com/lutingting/p/4768882.html ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- Softmax回归
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...
- Softmax回归(Softmax Regression)
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...
- Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...
- Softmax 回归原理介绍
考虑一个多分类问题,即预测变量y可以取k个离散值中的任何一个.比如一个邮件分类系统将邮件分为私人邮件,工作邮件和垃圾邮件.由于y仍然是一个离散值,只是相对于二分类的逻辑回归多了一些类别.下面将根据多项 ...
- UFLDL教程(四)之Softmax回归
关于Andrew Ng的machine learning课程中,有一章专门讲解逻辑回归(Logistic回归),具体课程笔记见另一篇文章. 下面,对Logistic回归做一个简单的小结: 给定一个待分 ...
- Logistic回归(逻辑回归)和softmax回归
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...
随机推荐
- 基于.NetCore3.1搭建项目系列 —— 使用Swagger做Api文档 (下篇)
前言 回顾上一篇文章<使用Swagger做Api文档 >,文中介绍了在.net core 3.1中,利用Swagger轻量级框架,如何引入程序包,配置服务,注册中间件,一步一步的实现,最终 ...
- iOS开发如何面对疫情过后的面试高峰期 !
2020年本应该是一个 "爱你.爱你"的年份!却因为 黑天鹅 给我们带来非常大的影响! 一.2020年iOS招聘数据分析 这里是 2020年3月份BOSS直聘 北京iOS招聘前几页 ...
- FFmpeg SDK for iOS
FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的跨平台开源计算机程序. 很多平台视频播放器都是使用FFmpeg来开发的,FFmpeg官方并没有为各个平台提供编译好的SDK,所以使 ...
- Redhat 线下赛 WEB WP
赛制 给每个参赛队伍所有题目的gamebox,参赛队伍在开赛时就能获取到所有题目的源码,可以选择先防御后攻击或先攻击后防御,只要拿到gamebox上的flag,机器人就会自动帮你攻击场上所有未防御选手 ...
- gdb中的gef插件
地址 https://github.com/hugsy/gef # via the install script #下载 `gef.sh` 并执行 wget -q -O- https://github ...
- ML-Agents(三)3DBall例子
ML-Agents(三)3DBall例子 前一周忙着公司的考试,都没有怎么学新的,今天补上~ 之后的记录,我准备先只研究官方的示例,主要是把研究过程中的疑惑和想法记下来.首先我先补充一下如何利用GPU ...
- 使用TensorFlow v2库实现线性回归
使用TensorFlow v2库实现线性回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 from __future__ import absolute_import, division, ...
- socket,实现服务器和客户端对话
服务器: #define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string>#include<WinSock ...
- .NET Core技术研究-中间件的由来和使用
我们将原有ASP.NET应用升级到ASP.NET Core的过程中,会遇到一个新的概念:中间件. 中间件是ASP.NET Core全新引入的概念.中间件是一种装配到应用管道中以处理请求和响应的软件. ...
- python—nnlog日志
#when='S'每秒产生一个[D天默认 H M S]# backCount='5'## level是设置打印级别默认是debug级别(下面是四个级别可以指定打印) import nnlog lo ...