目标

在图像处理中,由于每秒要处理大量操作,因此必须使代码不仅提供正确的解决方案,而且还必须以最快的方式提供。因此,在本章中,你将学习

  • 衡量代码的性能。
  • 一些提高代码性能的技巧。
  • 你将看到以下功能:cv.getTickCountcv.getTickFrequency等。

除了OpenCV,Python还提供了一个模块time,这有助于衡量执行时间。另一个模块profile有助于获取有关代码的详细报告,例如代码中每个函数花费了多少时间,调用了函数的次数等。但是,如果你使用的是IPython,则所有这些功能都集成在用户友好的界面中方式。我们将看到一些重要的信息,有关更多详细信息,请查看“ **其他资源”**部分中的链接。

使用OpenCV衡量性能

cv.getTickCount函数返回从参考事件(如打开机器的那一刻)到调用此函数那一刻之间的时钟周期数。因此,如果在函数执行之前和之后调用它,则会获得用于执行函数的时钟周期数。

cv.getTickFrequency函数返回时钟周期的频率或每秒的时钟周期数。因此,要找到执行时间(以秒为单位),你可以执行以下操作:

e1 = cv.getTickCount()
# 你的执行代码
e2 = cv.getTickCount()
time = (e2 - e1)/ cv.getTickFrequency()

我们将通过以下示例进行演示。下面的示例应用中位数过滤,其内核的奇数范围为5到49。(不必担心结果会是什么样,这不是我们的目标):

img1 = cv.imread('messi5.jpg')
e1 = cv.getTickCount()
for i in range(5,49,2):
img1 = cv.medianBlur(img1,i)
e2 = cv.getTickCount()
t = (e2 - e1)/cv.getTickFrequency()
print( t )
# 我得到的结果是0.521107655秒

注意

你可以使用时间模块执行相同的操作。代替cv.getTickCount,使用time.time()函数。然后取两次相差。

OpenCV中的默认优化

许多 OpenCV 函数都是使用 SSE2、 AVX 等进行优化的。 它还包含未优化的代码。因此,如果我们的系统支持这些特性,我们就应该利用它们(几乎所有现代的处理器都支持它们)。在编译时默认启用它。因此,如果启用了 OpenCV,它将运行优化的代码,否则它将运行未优化的代码。你可以使用 cvUseoptimized 检查是否启用 / 禁用和 cvSetuseoptimized 以启用 / 禁用它。让我们看一个简单的例子。

#检查是否启用了优化

# 检查是否启用了优化
In [5]: cv.useOptimized()
Out[5]: True
In [6]: %timeit res = cv.medianBlur(img,49)
10 loops, best of 3: 34.9 ms per loop
# 关闭它
In [7]: cv.setUseOptimized(False)
In [8]: cv.useOptimized()
Out[8]: False
In [9]: %timeit res = cv.medianBlur(img,49)
10 loops, best of 3: 64.1 ms per loop

看,优化的中值滤波比未优化的版本快2倍。如果你检查其来源,你可以看到中值滤波是 SIMD 优化。因此,你可以使用它在代码顶部启用优化(请记住,它是默认启用的)

在IPython中衡量性能

有时你可能需要比较两个类似操作的性能。IPython为你提供了一个神奇的命令计时器来执行此操作。它会多次运行代码以获得更准确的结果。同样,它们适用于测量单行代码。

例如,你知道以下哪个加法运算更好,x = 5; y = x**2, x = 5; y = x*x, x = np.uint8([5]); y = x*xy = np.square(x)?我们将在IPython shell中使用timeit得到答案。

In [10]: x = 5

In [11]: %timeit y=x**2
10000000 loops, best of 3: 73 ns per loop In [12]: %timeit y=x*x
10000000 loops, best of 3: 58.3 ns per loop In [15]: z = np.uint8([5]) In [17]: %timeit y=z*z
1000000 loops, best of 3: 1.25 us per loop In [19]: %timeit y=np.square(z)
1000000 loops, best of 3: 1.16 us per loop

你可以看到x = 5; y = x * x最快,比Numpy快20倍左右。如果你还考虑阵列的创建,它可能会快100倍。酷吧?(大量开发人员正在研究此问题)

注意

Python标量操作比Numpy标量操作快。因此,对于包含一两个元素的运算,Python标量比Numpy数组好。当数组大小稍大时,Numpy会占优势。

我们将再尝试一个示例。这次,我们将比较cv.countNonZeronp.count_nonzero对于同一张图片的性能。

In [35]: %timeit z = cv.countNonZero(img)
100000 loops, best of 3: 15.8 us per loop
In [36]: %timeit z = np.count_nonzero(img)
1000 loops, best of 3: 370 us per loop

看,OpenCV 函数比 Numpy 函数快近25倍。

注意

通常,OpenCV函数比Numpy函数要快。因此,对于相同的操作,首选OpenCV功能。但是,可能会有例外,尤其是当Numpy处理视图而不是副本时。

更多IPython魔术命令

还有其他一些魔术命令可以用来测量性能,性能分析,行性能分析,内存测量等。它们都有很好的文档记录。因此,此处仅提供指向这些文档的链接。建议有兴趣的读者尝试一下。

性能优化技术

有几种技术和编码方法可以充分利用 Python 和 Numpy 的最大性能。这里只注明相关信息,并提供重要信息来源的链接。这里要注意的主要事情是,首先尝试以一种简单的方式实现算法。一旦它运行起来,分析它,找到瓶颈并优化它们。

  1. 尽量避免在Python中使用循环,尤其是双/三重循环等。它们本来就很慢。
  2. 由于Numpy和OpenCV已针对向量运算进行了优化,因此将算法/代码向量化到最大程度。
  3. 利用缓存一致性。
  4. 除非需要,否则切勿创建数组的副本。尝试改用视图。数组复制是一项昂贵的操作。

即使执行了所有这些操作后,如果你的代码仍然很慢,或者不可避免地需要使用大循环,请使用Cython等其他库来使其更快。

其他资源

  1. Python优化技术:http://wiki.python.org/moin/PythonSpeed/PerformanceTips
  2. Scipy讲义- 高级Numpy:http://scipy-lectures.github.io/advanced/advanced_numpy/index.html#advanced-numpy
  3. IPython中的时序和性能分析:http://pynash.org/2013/03/06/timing-and-profiling/

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV -Python 性能衡量和提升技术 | 十二的更多相关文章

  1. 【阿里聚安全·安全周刊】阿里双11技术十二讲直播预约|AWS S3配置错误曝光NSA陆军机密文件

    关键词:阿里双11技术十二讲直播丨雪人计划丨亚马逊AWS S3配置错误丨2018威胁预测丨MacOS漏洞丨智能风控平台MTEE3丨黑客窃取<权利的游戏>剧本|Android 8.1   本 ...

  2. python成长之路【第十二篇】:RabbitMQ入门

    一.RabbitMQ介绍 解释RabbitMQ,就不得不提到AMQP(Advanced Message Queuing Protocol)协议. AMQP协议是一种基于网络的消息传输协议,它能够在应用 ...

  3. Python成长笔记 - 基础篇 (十二)

    本节内容 ORM介绍 sqlalchemy安装 sqlalchemy基本使用 多外键关联 多对多关系 表结构设计作业 主题:学员管理系统 需求: 用户角色,讲师\学员, 用户登陆后根据角色不同,能做的 ...

  4. 《Python 学习手册4th》 第十二章 if测试和语法规则

    ''' 时间: 9月5日 - 9月30日 要求: 1. 书本内容总结归纳,整理在博客园笔记上传 2. 完成所有课后习题 注:“#” 后加的是备注内容 (每天看42页内容,可以保证月底看完此书) “重点 ...

  5. Python学习之旅(三十二)

    Python基础知识(31):图形界面(Ⅱ) Python内置了turtle库,可以在计算机上绘图 运动控制: 1.画笔定位到坐标(x,y):turtle.goto(x,y) 2.向正方向运动 dis ...

  6. Python小白学习之路(十二)—【前向引用】【风湿理论】

    前向引用 风湿理论(函数即变量) 理论总是很抽象,我个人理解: 代码从上到下执行,一旦遇到定义的函数体,内存便为其开辟空间,并用该函数的名字作为一个标识但是该函数体内具体是什么内容,这个时候并不着急去 ...

  7. Go语言核心36讲(Go语言进阶技术十二)--学习笔记

    18 | if语句.for语句和switch语句 现在,让我们暂时走下神坛,回归民间.我今天要讲的if语句.for语句和switch语句都属于 Go 语言的基本流程控制语句.它们的语法看起来很朴素,但 ...

  8. python nose测试框架全面介绍十二 ----用例执行顺序打乱

    在实际执行自动化测试时,发现我们的用例在使用同一个资源的操作时,用例的执行顺序对测试结果有影响,在手工测试时是完全没法覆盖的. 但每一次都是按用例名字来执行,怎么打乱来执行的. 在网上看到一个有意思的 ...

  9. Python之路【第三十二篇】:django 分页器

    Django的分页器paginator 文件为pageDemo models.py from django.db import models # Create your models here. cl ...

随机推荐

  1. ADO.NET中DataTable类的使用

    DataTable类将关系数据表示为表格形式.在创建DataTable之前,必须包含System.Data名称空间.ADO.NET提供了一个DataTable类来独立创建和使用数据表.它也可以和Dat ...

  2. 前阿里数据库专家总结的MySQL里的各种锁(下篇)

    在上篇中,我们介绍了MySQL中的全局锁和表锁. 今天,我们专注于介绍一下行锁,这个在日常开发和面试中常常困扰我们的问题. 1.行锁基础 由于全局锁和表锁对增删改查的性能都会有较大影响,所以,我们自然 ...

  3. Golang 使用Protocol Buffer 案例

    目录 1. 前言 2. Protobuf 简介 2.1 Protobuf 优点 2.2 Protobuf 缺点 2.3 Protobuf Golang 安装使用 3. Protobuf 通讯案例 3. ...

  4. boostrap3 bootstrap-datetimepicker.min.js设置中文语言

    问题 bootstrap3中使用bootstrap-datetimepicker遇到设置中文语言的问题 解决办法 bootstrap-datetimepicker在使用的时候要先引入momentjs中 ...

  5. 如何开发和发布一个Vue插件

    前言 Vue 项目开发过程中,经常用到插件,比如原生插件 vue-router.vuex,还有 element-ui 提供的 notify.message 等等.这些插件让我们的开发变得更简单更高效. ...

  6. Lake Counting(POJ No.2386)

    题目描述:有一个大小为N*M的园子,八连通的积水被认为是连接在一起的.请求出园子里总共有多少水洼?(八连通指的是下图中相对w的*部分) *** *w* *** 限制条件 N,M<=100 样例 ...

  7. 使用AtomicStampedReference<T>的大坑

    //在初始化的时候会把引用和时间戳存到pair中 AtomicStampedReference<Integer> integerAtomicStampedReference = new A ...

  8. web实验二 ---通过jQuery实现用户注册身份验证

    通过jQuery实现用户注册身份验证,当每个文本框失去焦点时进行该文本框内容校验,并将校验信息在文本框右侧显示出结果. 具体校验要求: 1.用户名由6-18位字符组成 2.密码由6-18位字符组成,且 ...

  9. 19.10.11学习日记随笔 mysql事务隔离性

    一天的感悟 学习事务的处理方式,其中反想自己学过的flask 默认是开启事务的,flask_sqlalchemy每次在提交时都是需要commit,或者失败是需要rollback回滚操作的,其实pyth ...

  10. java面试汇总一

    第一部分 Java SE基础(1) 1.1 java的8种基本数据类型 装箱  拆箱 1.1.1  8种基本的数据类型 1.1.2装箱  拆箱 自动装箱是 Java 编译器在基本数据类型和对应的对象包 ...