OPTICS聚类算法原理
OPTICS聚类算法原理
基础
OPTICS聚类算法是基于密度的聚类算法,全称是Ordering points to identify the clustering structure,目标是将空间中的数据按照密度分布进行聚类,其思想和DBSCAN非常类似,但是和DBSCAN不同的是,OPTICS算法可以获得不同密度的聚类,直接说就是经过OPTICS算法的处理,理论上可以获得任意密度的聚类。因为OPTICS算法输出的是样本的一个有序队列,从这个队列里面可以获得任意密度的聚类。
定义
OPTICS算法的基础有两点,
- 参数(半径,最少点数):
一个是输入的参数,包括:半径 ε ,和最少点数 MinPts 。
- 定义(核心点,核心距离,可达距离,直接密度可达):
另一个是相关概念的定义:
核心点的定义,如果一个点的半径内包含点的数量不少于最少点数,则该点为核心点,数学描述即
Nε(P)>=MinPts
在这个基础上可以引出核心距离的定义,即对于核心点,距离其第 MinPtsth 近的点与之的距离
coreDist(P)={UNDIFED, MinPtsth Distance in N(P),if N(P)<=MinPtselse
可达距离,对于核心点P,O到P的可达距离定义为O到P的距离或者P的核心距离,即公式
reachDist(O,P)={UNDIFED, max(coreDist(P), dist(O,P)),if N(P)<=MinPtselse
O到P直接密度可达,即P为核心点,且P到O的距离小于半径。
算法
OPTICS算法的难点在于维护核心点的直接可达点的有序列表。算法的计算过程如下:
输入:数据样本D,初始化所有点的可达距离和核心距离为MAX,半径 ε ,和最少点数 MinPts 。
1、建立两个队列,有序队列(核心点及该核心点的直接密度可达点),结果队列(存储样本输出及处理次序)
- 2、如果D中数据全部处理完,则算法结束,否则从D中选择一个未处理且未核心对象的点,将该核心点放入结果队列,该核心点的直接密度可达点放入有序队列,直接密度可达点并按可达距离升序排列;
- 3、如果有序序列为空,则回到步骤2,否则从有序队列中取出第一个点;
- 3.1 判断该点是否为核心点,不是则回到步骤3,是的话则将该点存入结果队列,如果该点不在结果队列;
- 3.2 该点是核心点的话,找到其所有直接密度可达点,并将这些点放入有序队列,且将有序队列中的点按照可达距离重新排序,如果该点已经在有序队列中且新的可达距离较小,则更新该点的可达距离。
- 3.3 重复步骤3,直至有序队列为空。
- 4、算法结束。
输出结果
给定半径 ε ,和最少点数 MinPts ,就可以输出所有的聚类。
计算过程为:
给定结果队列
- 1、从结果队列中按顺序取出点,如果该点的可达距离不大于给定半径 ε ,则该点属于当前类别,否则至步骤2;
- 2、如果该点的核心距离大于给定半径 ε ,则该点为噪声,可以忽略,否则该点属于新的聚类,跳至步骤1;
- 3、结果队列遍历结束,则算法结束。
OPTICS聚类算法原理的更多相关文章
- Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...
- 【转】K-Means聚类算法原理及实现
k-means 聚类算法原理: 1.从包含多个数据点的数据集 D 中随机取 k 个点,作为 k 个簇的各自的中心. 2.分别计算剩下的点到 k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇.两 ...
- BIRCH聚类算法原理
在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理.这里我们再来看看另外一种常见的聚类算法BIRCH.BIRCH算法比较适合于数据量大,类别数K也 ...
- K-Means聚类算法原理
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...
- K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- 第十三篇:K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- 机器学习中K-means聚类算法原理及C语言实现
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means ...
- 【机器学习】:Kmeans均值聚类算法原理(附带Python代码实现)
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给 ...
- 密度峰值聚类算法原理+python实现
密度峰值聚类(Density peaks clustering, DPC)来自Science上Clustering by fast search and find of density peaks ...
随机推荐
- 小小小小小flag
2020:300道题 小小小小小flag 150红题 100道橙题 50道黄题 努力变强!加油 我的主页: 主页https://www.luogu.com.cn/user/306734 谢谢大家,目前 ...
- 详解 stream流
在本人之前的博文中,我们学习了 I/O流.NIO流的相关概念. 那么,在JDK8的更新内容中,提出了一个新的流 -- stream流 那么,现在,本人就来讲解下这个流: 目录 stream流 常用AP ...
- 使用redis-dump与redis-load方式迁移redis数据库
实际生产场景中,有可能会因为迁移机房或者更换物理机等原因需要在生产环境迁移redis数据.本文就来为大家介绍一下迁移redis数据的方法. 迁移redis数据一般有如下3种方式: 1.第三方工具red ...
- 12. 前后端联调 + ( proxy代理 ) + ( axios拦截器 ) + ( css Modules模块化方案 ) + ( css-loader ) + ( 非路由组件如何使用history ) + ( bodyParser,cookieParser中间件 ) + ( utility MD5加密库 ) + ( nodemon自动重启node ) + +
(1) proxy 前端的端口在:localhost:3000后端的端口在:localhost:1234所以要在webpack中配置proxy选项 (proxy是代理的意思) 在package.jso ...
- Spring5:事务管理【整合Mybatis】
Spring 整合Mybatis 1:导入依赖 <dependencies> <!--测试依赖--> <dependency> <groupId>jun ...
- Trie树-提高海量数据的模糊查询性能
今天这篇文章源于上周在工作中解决的一个实际问题,它是个比较普遍的问题,无论做什么开发,估计都有遇到过.具体是这样的,我们有一份高校的名单(2657个),需要从海量的文章标题中找到包含这些高校的标题,其 ...
- JavaScript和php数组的定义
JavaScript: var arr=[值1,值2,值3]; //隐式创建 var arr=new Array(值1,值2,值3); //直接实例化 ...
- curl请求本地域名问题
curl在本地虚拟机上请求本地接口时候,出现域名解析问题,换为ip即可,可用curl_error() 或者curl_errno来调试: vue单个文件在引入时候自己的逻辑js文件一定要放在html后引 ...
- 天大福利!世界第一科技出版公司 Springer 免费开放 400 多本电子书!
前几天,世界著名的科技期刊/图书出版公司施普林格(Springer)宣布:免费向公众开放 400 多本正版的电子书!! Springer 即施普林格出版社,于1842 年在德国柏林创立,20 世纪60 ...
- 程序员最喜欢用的在线IDE代码编译器,什么?你竟然不知道!
1.网址https://tech.io/snippet 支持 20+ 种编程语言,页面上没有杂七杂八的东西,非常简约,非常干净,另外,它上面的代码段还可以嵌入到网页之中. 2.网址 https://w ...