7. RECENCY-SENSITIVE RANKING

作用:

为recency-sensitive的query提高排序质量;

对于这类query,用户不仅要相关的还需要最新的信息;

方法:recency-demoted relevance

1) 对每篇doc,按照它的freshness程度进行分级:very fresh, fresh, slightly out-dated, stale, 和 non-time-sensitive(与时间无关);

2) 在base relevance的基础上,根据freshness进一步调整relevance:

  VF F SO S NT
Perfect Perfect Perfect Excellent Good Perfect
Excellent Perfect Excellent Good Fair Excellent
Good Good Good Fair Bad Good
Fair Fair Fair Bad Bad Fair
Bad Bad Bad Bad Bad Bad

3)数据:“收集training data”

  • 寻找大量的近期标签是不太可能的事情,因为近期的标签总是很快就out of data;
  • 因此需要利用a large relevance dataset without recency labels and a small recency dataset for building the recency ranker;

4)公式:(待添加)

备注:

  • 其中freshness组件是基于recency dataset训练得到的:通过time-sensitive classifier来决定此component是否要被添加;
  • frel(x)代表基本的ranker;rfresh(x)代表freshness组件;cts代表time-sensitivity分类器;
  • 仅当Cts表明x为time-sensitive query-url对时,rfresh(x)才被添加;

重点:time-sensitive classifier的训练;freshness component;

1) time-sensitive classifier

use the recency dataset and transform the freshness labels into binary labels (eg:non-time-sensitive to negative and other labels to positive) and train a binary classfier;

2)build rfresh(x)

use the frel(x) as the base ranker, and add more trees to optimize the goal of recency-demoted relevance;

8. LOCATION-SENSITIVE RANKING

location-sensitive query:

一些query的搜索结果与location关系密切,此类query我们称之为location-sensitive queries, 分为:

explicit local query - queries with specific location names(eg:"restaurants Boston");

implicit local query - queries without location but with location-sensitive intention(eg:"restaurant");

方法:通过query和url直接的距离d(query, url)来计算;

但如果使用过去的learning-to-rank模型的话,d(query, url)特征的影响不大,所以新建以下模型用来计算 -

模型:location boosting rankin model

1)分别从query和web page中提取出location:

  • explicit local query - directly parse the location in explicit local query;
  • implicit local query - use use's location;
  • web pages - extracted based on the query-url click graph from search logs,or parse the locations from urls directly;

2)根据各自的location,计算query和web page之间的距离:

公式(待加)

以上logistic function考虑到base relevance和location之间的距离两个因素:

  • 当doc的url地址和用户很接近,而且doc的内容也和query匹配时,对该doc进行提权操作;
  • 若doc的url地址和用户很接近,但是doc的内容与query不相关,将不对该doc提权,ranking结果此时仅有base ranking function决定;
  • 若doc的内容与query相关度很高,但doc的url地址与用户相隔很远,将不对该doc提权,ranking结果此时仅有base ranking function决定;

备注:

d^(query,url)代表d(query,url)的归一化,范围为[0,1];

fb(x)表示基于base ranking function得到的query和url的相关度;

3)参数的确定:

参数w, α, β通过以下公式由成对的数据确定 -

公式(待加)

备注:

其中P={(pi, pj)| pi > pj}是对于同一个query的一系列url pairs,pi > pj表示pi的相关性好于pj

我们通过standard gradient descent approach来得到参数的最优化结果;

9. CONCLUSION

In this paper, we introduce the comprehensive relevance solutions of Yahoo search.

【阅读笔记】Ranking Relevance in Yahoo Search (四 / 完结篇)—— recency-sensitive ranking的更多相关文章

  1. 【阅读笔记】Ranking Relevance in Yahoo Search (二)—— maching learned ranking

    3. MACHINE LEARNED RANKING 1) 完全使用不好的数据去训练模型不可行,因为负面结果不可能覆盖到所有方面: 2) 搜索可以看做是个二分问题,在此实验中,我们使用gradient ...

  2. 【阅读笔记】Ranking Relevance in Yahoo Search (一)—— introduction & background

    ABSTRACT: 此文在相关性方面介绍三项关键技术:ranking functions, semantic matching features, query rewriting: 此文内容基于拥有百 ...

  3. 【阅读笔记】Ranking Relevance in Yahoo Search (三)—— query rewriting

    5. QUERY REWRITING 作用: query rewriting is the task of altering a given query so that it will get bet ...

  4. Ranking relevance in yahoo search (2016)论文阅读

    文章链接 https://www.kdd.org/kdd2016/papers/files/adf0361-yinA.pdf abstract 点击特征在长尾query上的稀疏性问题 基础相关性三大技 ...

  5. 短信发送接口被恶意访问的网络攻击事件(四)完结篇--搭建WAF清理战场

    前言 短信发送接口被恶意访问的网络攻击事件(一)紧张的遭遇战险胜 短信发送接口被恶意访问的网络攻击事件(二)肉搏战-阻止恶意请求 短信发送接口被恶意访问的网络攻击事件(三)定位恶意IP的日志分析脚本 ...

  6. Hadoop阅读笔记(四)——一幅图看透MapReduce机制

    时至今日,已然看到第十章,似乎越是焦躁什么时候能翻完这本圣经的时候也让自己变得更加浮躁,想想后面还有一半的行程没走,我觉得这样“有口无心”的学习方式是不奏效的,或者是收效甚微的.如果有幸能有大牛路过, ...

  7. Mina源码阅读笔记(四)—Mina的连接IoConnector2

    接着Mina源码阅读笔记(四)-Mina的连接IoConnector1,,我们继续: AbstractIoAcceptor: 001 package org.apache.mina.core.rewr ...

  8. Kafka 权威指南阅读笔记(第三章,第四章)

    Kafka 第三章,第四章阅读笔记 Kafka 发送消息有三种方式:不关心结果的,同步方式,异步方式. Kafka 的异常主要有两类:一种是可重试异常,一种是无需重试异常. 生产者的配置: acks ...

  9. C++ Primer 第四版阅读笔记

    阅读笔记 初始化 变量定义指定了变量的类型和标识符,也可以为对象提供初始值.定义时指定了初始值的对象被称为是 已初始化的.C++ 支持两种初始化变量的形式:复制初始化和 直接初始化.复制初始化语法用等 ...

随机推荐

  1. time_wait 详解和解决方案

    1. 产生原因 2. 导致问题 3. Nginx 3.1 长连接 4. 解决方案 5 .参考 产生原因 TCP 连接关闭时,会有 4 次通讯(四次挥手),来确认双方都停止收发数据了.如上图,主动关闭方 ...

  2. SpringCloud Alibaba01-Nacos

    全家桶介绍: https://spring-cloud-alibaba-group.github.io/github-pages/greenwich/spring-cloud-alibaba.html ...

  3. Docker的简介以及Dockerfile编写与使用

    Docker的简介 Docker是在容器的基础上,进行了进一步的封装,极大的简化了容器的创建和维护.使得Docker技术比虚拟机技术更为轻便.快捷. 下面是两张对比图. 可以看到传统虚拟机技术是虚拟出 ...

  4. redis持久化文件问题

    问题: Can't open the append-only file Permission denied 发现缺少文件:/data/缺少appendonly.aof,dump.rdb文件. 手动创建 ...

  5. Java第十五天,泛型

    一.定义 泛型是一种未知的数据类型,即当我们不知道该使用哪种数据类型的时候,可以使用泛型. 泛型的本质是为了  参数化 类型(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型) ...

  6. Mac 系统root

    没错,你没看错,就是root mac系统安装件的时候,你有没有遇到过这种情况 总之,就是安装不上软件,肿么办? 网上解觉办法是: 进入系统偏好设置,设置为允许任何人,可是进去后这样: 别着急,打开命令 ...

  7. 如何在云开发静态托管中使用Hugo

    如何在云开发静态托管中使用Hugo 介绍 hugo是一个用Go编写的静态站点生成器,由于具有丰富的主题资源和有比较丰富的主题资源和较好的生成速度. 云开发(CloudBase)是一款云端一体化的产品方 ...

  8. 21-Java-Hibernate框架(一)

    一.Hibernate了解 Hibernate框架是Java持久层的框架,是Gavin King发明的,2001年发布的,JBoss公司的产品,2003年进入市场. Hibernate是基于对象来操作 ...

  9. python输出中文乱码

    首选项-浏览插件目录-USER文件夹 找到编译环境设置,编译方式为UTF-8编码 { "cmd": ["c:/Python36/python.exe",&quo ...

  10. 负载均衡服务之HAProxy基础入门

    首先我们来了解下haproxy是干嘛的?haproxy是一个法国人名叫Willy Tarreau开发的一个开源软件:这款软件主要用于解决客户端10000以上的同时连接的高性能的TCP和HTTP负载均衡 ...