题意

你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) ;剩下 \(m\) 个都是无穷,没有最小值或最大值。你可以进行任意多轮操作,每轮操作如下:

在不为最大值的数中等概率随机选择一个(如果没有则不操作),把它加一;

进行 \(k\) 次这个步骤:在不为最小值的数中等概率随机选择一个(如果没有则不操作),把它减一。

现在问期望进行多少轮操作以后第一个数会变为最小值 \(0\)。

\(1 \leq p \leq n \leq 1500\) ,\(0 \leq m, k \leq 10^9\) 。

Solution

显然我们只用考虑第一个数的变化。

设 \(P_x\) 表示一次操作 \(-x\) 概率,即 \(k\) 次中选出 \(x\) 次,剩余 \(k-x\) 次分配到其他 \(m\) 个数。

\[P_x=\frac{\binom{k}{x}m^{k-x}}{(m+1)^k}
\]

设 \(Q_{x,y}\) 表示一次操作从 \(x\) 变到 \(y\) 的概率,不难推出

\[Q_{x,y}=\begin{equation}
\left\{
\begin{array}{lr}
0 & x=n 且 y=n+1 &\\
P_{x-y} & x=n\\
\frac{1}{m+1}P_0 & y=x+1\\
\frac{m}{m+1}P_{x-y}+\frac{1}{m+1}P_{x-y+1} & \text{otherwise}
\end{array}
\right.
\end{equation}
\]

设 \(f(i)\) 表示从 \(i\) 变到 \(0\) 的期望操作数。

\[\begin{align}
& f(i)=1+\sum_{j=1}^{i+1} Q_{i,j}f(j) & (1\le i<n) \\
& f(n)=1+\sum_{j=1}^nQ_{n,j}f(j)
\end{align}
\]

我们可以 \(n^2\) 消元上述式子。将 \((1)\) 变形可得

\[\begin{align}
f(i+1)=\frac{f(i)-\sum_{j=1}^iQ_{i,j}f(j)-1}{Q_{i,i+1}}
\end{align}
\]

可以利用 \((3),(4)\) 得到 \(f(n)\) 关于 \(f(1)\) 的两个方程,解出 \(f(1)\) 后带入即可。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int Mod=1e9+7,N=1505;
inline int mul(int x, int y) { return 1ll*x*y%Mod; }
inline int po(int x, int y)
{
int r=1;
while(y)
{
if(y&1) r=mul(r,x);
x=mul(x,x), y>>=1;
}
return r;
}
int f[N],x[N],y[N],fac[N],inv[N],n,p,m,k,iv;
inline int calcp(int x, int y)
{
if(x==n&&y==n+1) return 0;
if(x==n) return f[x-y];
if(y==x+1) return mul(iv,f[0]);
return (mul(mul(m,iv),f[x-y])+mul(f[x-y+1],iv))%Mod;
}
int main()
{
int T; scanf("%d",&T);
fac[0]=inv[0]=1;
for(int i=1;i<=1500;++i) fac[i]=mul(i,fac[i-1]);
inv[1500]=po(fac[1500],Mod-2);
for(int i=1499;i;--i) inv[i]=mul(inv[i+1],i+1);
while(T--)
{
scanf("%d%d%d%d",&n,&p,&m,&k);
if(!k||(!m&&k==1))
{
puts("-1");
continue;
}
if(!m)
{
int ans=0;
while(p>0)
{
if(p<n) ++p;
p-=k,++ans;
}
printf("%d\n",ans);
continue;
}
int inv0=po(m,Mod-2),inv1=po(po(m+1,k),Mod-2);
iv=po(m+1,Mod-2);
for(int i=0,j=1,g=po(m,k),l=min(n,k);i<=l;++i)
{
f[i]=mul(mul(mul(j,inv[i]),g),inv1);
j=mul(j,k-i),g=mul(g,inv0);
}
x[1]=1,y[1]=0;
for(int i=2;i<=n;++i)
{
x[i]=x[i-1],y[i]=(Mod+y[i-1]-1)%Mod;
for(int j=1;j<i;++j)
{
int tmp=calcp(i-1,j);
x[i]=(x[i]+Mod-mul(x[j],tmp))%Mod;
y[i]=(y[i]+Mod-mul(y[j],tmp))%Mod;
}
int tmp=po(calcp(i-1,i),Mod-2);
x[i]=mul(x[i],tmp),y[i]=mul(y[i],tmp);
}
int nx=0,ny=1;
for(int i=1;i<=n;++i)
{
int tmp=calcp(n,i);
nx=(nx+mul(x[i],tmp))%Mod;
ny=(ny+mul(y[i],tmp))%Mod;
}
int tmp=mul((ny-y[n]+Mod)%Mod,po((x[n]-nx+Mod)%Mod,Mod-2));
printf("%d\n",(mul(tmp,x[p])+y[p])%Mod);
memset(f,0,sizeof(int)*(min(n,k)+1));
}
}

【LOJ2513】「BJOI2018」治疗之雨的更多相关文章

  1. 【LOJ】#2513. 「BJOI2018」治疗之雨

    题解 具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮 \(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\) \(dp[n] ...

  2. 「BJOI2018」治疗之雨

    传送门 Description 有\(m+1\)个数,第一个数为\(p\),每轮:选一个数\(+1\),再依次选\(k\)个数\(-1\) 要求如果第一个数\(=N\),不能选它\(+1\),如果第一 ...

  3. 「BJOI2018」链上二次求和

    「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...

  4. 「BJOI2018」求和

    「BJOI2018」求和 传送门 观察到 \(k\) 很小而且模数不会变,所以我们直接预处理 \(k\) 取所有值时树上前缀答案,查询的时候差分一下即可. 参考代码: #include <alg ...

  5. 【LOJ】#2511. 「BJOI2018」双人猜数游戏

    题解 设\(f[p][a][b]\)表示询问了\(p\)次,答案是\(a,b\)是否会被猜出来 然后判断如果\(p = 1\) 第一个问的\(Alice\),那么\([s,\sqrt{nm}]\)约数 ...

  6. 【LOJ】#2493. 「BJOI2018」染色

    题面 题解 推结论大题--然而我推不出什么结论 奇环显然是NO 如果一个联通块里有两个分离的环,也是NO 如果一个联通块里,点数为n,边数为m m <= n的时候,是YES m >= n ...

  7. 【LOJ】#2492. 「BJOI2018」二进制

    题解 每次开这样的数据结构题感想都大概是如下两点 1.为什么别人代码长度都是我的1/2???? 2.为什么我运行时间都是他们的两倍???? 简单分析一下,我们关注一个区间是否合法只关注这个区间有多少个 ...

  8. 【LOJ】#2512. 「BJOI2018」链上二次求和

    题面 题解 转化一下可以变成所有小于等于r的减去小于等于l - 1的 然后我们求小于等于x的 显然是 \(\sum_{i = 1}^{n} \sum_{j = 1}^{min(i,x)} sum[i] ...

  9. 【LOJ】#2491. 「BJOI2018」求和

    题解 对于50个k都维护一个\(i^k\)前缀和即可 查询的时候就是查询一段连续的区间和,再加上根节点的 代码 #include <bits/stdc++.h> #define fi fi ...

随机推荐

  1. ESLint规则整理与实际应用

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/lhb_11/article/detail ...

  2. windows下的环境搭建配置redis

    http://blog.csdn.net/spring21st/article/details/11176723

  3. CSS创意与视觉表现

    视觉效果 CSS代码: .cover { padding: 36% 50%; background: linear-gradient(to right, white 50%, black calc(5 ...

  4. A10131013 Battle Over Cities (25分)

    一.技术总结 这一题是考查图的知识,题目的意思要理解清楚,就是考查统计图中连通块的数量,也就是没有一个结点后. 怎么删除该结点,并且统计连通块的数量成为问题解决的关键,这里可以当访问到结点时,直接返回 ...

  5. Python学习第二十八课——Django(urls)

    Django框架中的urls配置: 首先通过pycharm创建一个Django项目: 例如要写blog的功能:则在digango_lesson中的urls代码如下: """ ...

  6. cocoapods diff: /../Podfile.lock: No such file or directory 解决方案

    在运行之前的使用 CocoaPods 工程时,有时会报错:diff: /../Podfile.lock: No such file or directory diff: /Manifest.lock: ...

  7. flask-script扩展

    在项目部署到线上时,指定端口号时,一般都不会在服务器上进行更改,所以使用flask-script就可以在Flask服务器启动时,通过命令行的方式传入参数,而不仅仅通过app.run()方法中传参.具体 ...

  8. 【转】How to create a test plan

    What is a Test Plan? A TEST PLAN is a detailed document that describes the test strategy, objectives ...

  9. js 中一些重要的字符串方法

    String 对象方法 方法 描述 charAt() 返回在指定位置的字符. charCodeAt() 返回在指定的位置的字符的 Unicode 编码. concat() 连接两个或更多字符串,并返回 ...

  10. LeetCode困难题(一)

    题目一: 给你一个链表,每 k 个节点一组进行翻转,请你返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度. 如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序. 示例 ...