Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
 
Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1 简述:每个island与X轴都有最多2个交点,求最少点满足与所有区间相交
思路:区间选点问题,将每个区间右边递增排序后寻找即可,代码如下:
#define sqr(x) ((x)*(x))

const int maxm = ;

struct Node {
double l, r;
bool operator< (const Node &a) const {
return r < a.r;
}
} Nodes[maxm]; int d, n, sum, kase = ; int main() {
while(scanf("%d%d", &n, &d) && n) {
printf("Case %d: ", ++kase);
bool flag = true;
sum = ;
for (int i = ; i < n; ++i) {
double tx, ty, tmp;
scanf("%lf%lf", &tx, &ty); //x = tx -+ sqrt(d^2 - y0 ^2 )
if(d < ty) {
flag = false;
sum = -;
}
tmp = sqrt(sqr(d) - sqr(ty));
Nodes[i].l = tx - tmp, Nodes[i].r = tx + tmp;
}
if(flag) {
sort(Nodes, Nodes + n);
double maxr = Nodes[].r;
for (int i = ; i < n; ++i) {
if(maxr < Nodes[i].l) {
maxr = Nodes[i].r;
++sum;
}
}
}
printf("%d\n", sum);
}
return ;
}

注意在判断ty>d的时候不能提前退出,要读取完

补:

在区间选点问题上,要右端点进行排序,因为要找一个现有区间的公共点,若是左端点,会出现漏解的情况,例如:

												

Day3-C-Radar Installation POJ1328的更多相关文章

  1. [POJ1328]Radar Installation

    [POJ1328]Radar Installation 试题描述 Assume the coasting is an infinite straight line. Land is in one si ...

  2. POJ1328——Radar Installation

    Radar Installation Description Assume the coasting is an infinite straight line. Land is in one side ...

  3. POJ--1328 Radar Installation(贪心 排序)

    题目:Radar Installation 对于x轴上方的每个建筑 可以计算出x轴上一段区间可以包含这个点 所以就转化成 有多少个区间可以涵盖这所有的点 排序之后贪心一下就ok 用cin 好像一直t看 ...

  4. POJ1328 Radar Installation 【贪心&#183;区间选点】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54593   Accepted: 12 ...

  5. 【贪心】「poj1328」Radar Installation

    建模:二维转一维:贪心 Description Assume the coasting is an infinite straight line. Land is in one side of coa ...

  6. POJ1328 Radar Installation 解题报告

    Description Assume the coasting is an infinite straight line. Land is in one side of coasting, sea i ...

  7. POJ 1328 Radar Installation 贪心 A

    POJ 1328 Radar Installation https://vjudge.net/problem/POJ-1328 题目: Assume the coasting is an infini ...

  8. Radar Installation

    Radar Installation 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=86640#problem/C 题目: De ...

  9. Radar Installation(贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 56826   Accepted: 12 ...

  10. 贪心 POJ 1328 Radar Installation

    题目地址:http://poj.org/problem?id=1328 /* 贪心 (转载)题意:有一条海岸线,在海岸线上方是大海,海中有一些岛屿, 这些岛的位置已知,海岸线上有雷达,雷达的覆盖半径知 ...

随机推荐

  1. idea 创建maven子父工程

    1.创建maven工程: 2. 创建工程名称: 3.删除父工程下的src文件夹,指定打包方式为pom,添加maven依赖: 4.右键项目添加子工程: 5.添加子工程名称: 6.子工程创建成功: 7.依 ...

  2. Python学习第二十课——自定property and classmethod

    自定制property class Lazyproperty: def __init__(self,func): # print('==========>',func) self.func=fu ...

  3. VUE 鼠标右键自定义

    需要在区域内右击自定义菜单的DIV绑定contextmenu右击事件 <div   style="width:100% ; z-index: inherit;position: rel ...

  4. java 使用poi 导入Excel 数据到数据库

    由于我个人电脑装的Excel是2016版本的,所以这地方我使用了XSSF 方式导入 . 1先手要制定一个Excel 模板 把模板放入javaWeb工程的某一个目录下如图: 2模板建好了后,先实现模板下 ...

  5. python浅谈编程规范和软件开发目录规范的重要性

    前言 我们这些初学者,目前要做的就是遵守代码规范,这是最基本的,而且每个团队的规范可能还不一样,以后工作了,尽可能和团队保持一致,目前初学者就按照官方的要求即可 新人进入一个企业,不会接触到核心的架构 ...

  6. requests 用法小速记

    Request库安装方法 Request官网 使用管理员权限启动 command控制台(win+X 命令提示符(管理员)) 使用pip安装requests库(默认配置好python以及pip的环境变量 ...

  7. 理解WPF中的视觉树和逻辑树

    轉載地址:http://blog.csdn.net/changtianshuiyue/article/details/26981797 理解WPF中的视觉树和逻辑树  Understanding th ...

  8. kafka2x-Elasticsearch 数据同步工具demo

    Bboss is a good elasticsearch Java rest client. It operates and accesses elasticsearch in a way simi ...

  9. Web--Utils

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  10. 【规范建议】服务端接口返回字段类型与iOS端的解析

    一.本文档的写作目的 App需要跟产品.UI.后台.服务器.测试打交道,app的产出是其他端人员产出的综合体现.与其他端人员沟通就像是开发写接口,也就是面向接口编程的思想. 本文档讲解针对的是服务端返 ...