You are given an array 1,2,…, and an integer

.

You are asked to divide this array into

non-empty consecutive subarrays. Every element in the array should be included in exactly one subarray. Let () be the index of subarray the -th element belongs to. Subarrays are numbered from left to right and from 1 to

.

Let the cost of division be equal to ∑=1(⋅())

. For example, if =[1,−2,−3,4,−5,6,−7] and we divide it into 3 subbarays in the following way: [1,−2,−3],[4,−5],[6,−7], then the cost of division is equal to 1⋅1−2⋅1−3⋅1+4⋅2−5⋅2+6⋅3−7⋅3=−9

.

Calculate the maximum cost you can obtain by dividing the array

into

non-empty consecutive subarrays.

Input

The first line contains two integers

and (1≤≤≤3⋅105

).

The second line contains

integers 1,2,…, (||≤106

).

Output

Print the maximum cost you can obtain by dividing the array

into

nonempty consecutive subarrays.

Examples
Input

Copy

5 2
-1 -2 5 -4 8

Output

Copy

15

Input

Copy

7 6
-3 0 -1 -2 -2 -4 -1

Output

Copy

-45

Input

Copy

4 1
3 -1 6 0

Output

Copy

8

题解:将n个数的数组分成k个连续的子数组,并且第i个子数组的权值为i,则我们可以用后缀和。首先我们一定每个数都得至少取一次,则我么一定要取a[1],然后将后面的n-1个数排序,
因为题目要求获得答案最大,并且这后n-1个数我们任意取k-1个都能保证符合题意中的分法,则为了保证答案最大我们就要取比较大的前k-1个了~~
#include<bits/stdc++.h>
#include<iostream>
#include<stdio.h>
#include<iomanip>
#include<stack>
#include<queue>
#include<algorithm>
#include<cstring>
#include<map>
#include<vector>
#include<numeric>
#include<iterator>
#include<cmath>
#define mem(a,x) memset(a,x,sizeof(a));
using namespace std;
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); }
int lcm(int a, int b) { return a * b / gcd(a, b); }
const int INF = 0x3f3f3f3f;
typedef long long ll;
const int mod=1000000007;
typedef pair<int,int>Pi;
typedef pair<ll, ll>Pii;
map<int,int>mp;
map<int, char *>mp1;
map<char *, int>mp2;
map<char, int>mp3;
map<string,int>mp4;
map<char,int>mp5;
const int maxn = 300010;
ll a[maxn]; int read(){
int flag=1;
int sum=0;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')flag=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
sum=sum*10+c-'0';
c=getchar();
}
return sum*flag;
}
ll Read(){
int flag=1;
ll sum=0;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')flag=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
sum=sum*10+c-'0';
c=getchar();
}
return sum*flag;
}
ll quickmul(ll a,ll b){
ll ans=0;
while(b){
if(b&1){
ans=(ans+a)%mod;
}
a=(a+a)%mod;
b>>=1;
}
return ans;
}
ll quickpow(ll a,ll b){
ll ans=1;
while(b){
if(b&1)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans;
}
int main()
{
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=n;i>=1;i--)a[i]+=a[i+1];
sort(a+2,a+1+n,greater<ll>());
ll ans=0;
for(int i=1;i<=k;i++)ans+=a[i];
cout<<ans<<endl;
return 0;
}

D. Array Splitting(后缀数组)的更多相关文章

  1. CodeForces - 1175D Array Splitting(数组划分+后缀和+贪心)

    You are given an array a1,a2,…,ana1,a2,…,an and an integer kk. You are asked to divide this array in ...

  2. 后缀数组(suffix array)详解

    写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...

  3. 后缀数组(suffix array)

    参考: Suffix array - Wiki 后缀数组(suffix array)详解 6.3   Suffix Arrays - 算法红宝书 Suffix Array 后缀数组 基本概念 应用:字 ...

  4. 利用后缀数组(suffix array)求最长公共子串(longest common substring)

    摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...

  5. 笔试算法题(40):后缀数组 & 后缀树(Suffix Array & Suffix Tree)

    议题:后缀数组(Suffix Array) 分析: 后缀树和后缀数组都是处理字符串的有效工具,前者较为常见,但后者更容易编程实现,空间耗用更少:后缀数组可用于解决最长公共子串问题,多模式匹配问题,最长 ...

  6. 数据结构之后缀数组suffix array

    在字符串处理当中,后缀树和后缀数组都是非常有力的工具,其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料.其实后缀是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现,能够实现后缀树的很多 ...

  7. suffix array后缀数组

    倍增算法 基本定义子串:字符串 S 的子串 r[i..j],i≤j,表示 r 串中从 i 到 j 这一段也就是顺次排列 r[i],r[i+1],...,r[j]形成的字符串. 后缀:后缀是指从某个位置 ...

  8. 后缀数组 (Suffix Array) 学习笔记

    \(\\\) 定义 介绍一些写法和数组的含义,首先要知道 字典序 . \(len\):字符串长度 \(s\):字符串数组,我们的字符串存储在 \(s[0]...s[len-1]\) 中. \(suff ...

  9. Suffix Array 后缀数组

    后缀数组 顾名思义.SuffixArray(下面有时简称SA) 和字符串的后缀有关. 后缀:字符串中某个位置一直到结尾的子串.(SA中讨论包含了原串和空串).所以共同拥有len+1个后缀. 后缀数组: ...

随机推荐

  1. MySQL--从库启动复制报错1236

    链接:http://blog.csdn.net/yumushui/article/details/42742461 今天在搭建一个MySQL master-slave集群时,执行了change mas ...

  2. LeetCode随想------Single Number-----关于异或的性质

    异或满足交换律,结合律 任何数X^X=0,X^0=X 自反性 A XOR B XOR B = A xor  0 = A  设有A,B两个变量,存储的值分别为a,b,则以下三行表达式将互换他们的值 表达 ...

  3. hdu 5147 Sequence II【树状数组/线段树】

    Sequence IITime Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...

  4. Java连载70-冒泡算法、选择算法

    一.冒泡排序 1.也就是依次选出最大的放在最后面 package com.bjpowernode.java_learning; ​ public class D70_1_BubbleSort { pu ...

  5. Mybatis核心类生命周期和管理

    Mybatis核心类生命周期和管理 原文链接:https://blog.csdn.net/qq1134550437/article/details/51960480 1.SqlSessionFacto ...

  6. Java 容器使用中如何选择

    Collection  ├List │├LinkedList │├ArrayList │└Vector │└Stack ├Queue │├Deque │└LinkedList └Set   ├Sort ...

  7. 计算机网络(6): http cookie

    Cookie作用: 1)帮助管理用户会话信息(用户需要记录的信息:登陆状态等) 2)跟踪浏览器的行为 3)用户自定义设置 实现方式: 当用户浏览带有Cookie的网站时,网站自动为其生成一个唯一的标志 ...

  8. 可能对Flutter应用程序开发有用的代码/库/专有技术列表

    当我开始使用Flutter实施该应用程序时,我开始担心“如何最好地编写?”以及“如何使其更好地放置?”. 在这种情况下,您将需要参考GitHub上发布的代码和应用程​​序. 因此,我收集了似乎对Flu ...

  9. gcd--最大公因数

    求两个数的最大公倍数 考完五校的第一天,在家补视频ing,简单来说的话就是给了两个数A,B 假设他们两个的最大公倍数为d,那么A=X*d,B=Y*d gcd就是把一直gcd(B%A,A)不断更新,其中 ...

  10. image compression with libjpeg

    http://www.aaronmr.com/en/2010/03/test/ Working on the project I've seen in the need for compression ...