numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

在指定的间隔内返回均匀间隔的数字。

返回num均匀分布的样本,在[start, stop]。

这个区间的端点可以任意的被排除在外。

Parameters(参数):

start : scalar(标量)

The starting value of the sequence(序列的起始点).

stop : scalar

序列的结束点,除非endpoint被设置为False,在这种情况下, the sequence consists of all but the last of num + 1 evenly spaced samples(该序列包括所有除了最后的num+1上均匀分布的样本(感觉这样翻译有点坑)), 以致于stop被排除.当endpoint is False的时候注意步长的大小(下面有例子).

num : int, optional(可选)

生成的样本数,默认是50。必须是非负。

endpoint : bool, optional

如果是真,则一定包括stop,如果为False,一定不会有stop

retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.(看例子)

dtype : dtype, optional

The type of the output array. If dtype is not given, infer the data type from the other input arguments(推断这个输入用例从其他的输入中).

New in version 1.9.0.

Returns:

samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).

step : float(只有当retstep设置为真的时候才会存在)

Only returned if retstep is True

Size of spacing between samples.

See also

arange
Similar to linspace, but uses a step size (instead of the number of samples).
arange使用的是步长,而不是样本的数量 
logspace
Samples uniformly distributed in log space.
 
当endpoint被设置为False的时候
>>> import numpy as np
>>> np.linspace(1, 10, 10)
array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.])
>>> np.linspace(1, 10, 10, endpoint = False)
array([ 1. ,  1.9,  2.8,  3.7,  4.6,  5.5,  6.4,  7.3,  8.2,  9.1])
In [4]: np.linspace(1, 10, 10, endpoint = False, retstep= True)
Out[4]: (array([ 1. ,  1.9,  2.8,  3.7,  4.6,  5.5,  6.4,  7.3,  8.2,  9.1]), 0.9)

官网的例子

Examples

>>>

>>> np.linspace(2.0, 3.0, num=5)
array([ 2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([ 2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)

Graphical illustration:

>>>

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

numpy.linspace使用详解的更多相关文章

  1. numpy的linspace使用详解

    文档地址: https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html Parameters(参数): start ...

  2. python常用模块numpy解析(详解)

    numpy模块 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 后打开浏览器输入网址http://local ...

  3. numpy模块(详解)

    重点 索引和切片 级联 聚合操作 统计操作 矩阵 什么是数据分析 是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 数据分析是用适当的方法对收集来的大量数据进行分析,帮助 ...

  4. numpy.where() 用法详解

    numpy.where (condition[, x, y]) numpy.where() 有两种用法: 1. np.where(condition, x, y) 满足条件(condition),输出 ...

  5. numpy表示图片详解

    我自己的一个体会,在学习机器学习和深度学习的过程里,包括阅读模型源码的过程里,一个比较大的阻碍是对numpy掌握的不熟,有的时候对矩阵的维度,矩阵中每个元素值的含义晕乎乎的. 本文就以一个2 x 2 ...

  6. numpy sum axis详解

    axis 先看懂numpy.argmax的含义.那么numpy.sum就非常好理解. 看一维的例子. import numpy as np a = np.array([1, 5, 5, 2]) pri ...

  7. 【python】详解numpy库与pandas库axis=0,axis= 1轴的用法

    对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: nu ...

  8. numpy的文件存储.npy .npz 文件详解

    Numpy能够读写磁盘上的文本数据或二进制数据. 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 ...

  9. matplotlib模块详解

    简单绘图,折线图,并保存为图片 import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[10,5,15,10,20] plt.plot(x,y,'ro-',c ...

随机推荐

  1. select模块

    select模块 1.      select模块 源:select.py This module provides access to the select() and poll() functio ...

  2. Java中四种遍历Map对象的方法

    方法一:在for-each循环中使用entry来遍历,通过Map.entrySet遍历key和value,这是最常见的并且在大多数情况下也是最可取的遍历方式.在键值都需要时使用. Map<Int ...

  3. 第1节 Scala基础语法:13、list集合的定义和操作;16、set集合;17、map集合

    list.+:5 , list.::5: 在list集合头部添加单个元素5 : li1.:+(5):在list集合尾部添加单个元素5: li1++li2,li1:::li2:在li1集合尾部添加il2 ...

  4. 捣鼓FileZilla

    今天突然对ftp服务器感兴趣,于是随意打了一个ftp词条,发现了FZ官网,好奇点进去下载了之后,捣鼓了一会.于是,也写一个小教程记录一下吧,害怕自己以后忘记怎么弄的了. 首先需要用到两个,一个是FZ ...

  5. 32 commons-lang包学习

    maven依赖 <dependency> <groupId>commons-lang</groupId> <artifactId>commons-lan ...

  6. Centos7 设置自定义安装nginx的systemctl启动方式

    一.systemctl方式启动设置过程 1.首先创建服务配置文件(名字和路径就是这个) vim /usr/lib/systemd/system/nginx.service 2.添加配置内容 [Unit ...

  7. 1. 使用 Docker 安装 Kong

    Create a Docker network $ docker network create kong-net Start Database $ docker run -d --name kong- ...

  8. 关于Redis 分布式 微服务 集群Cluster

    一:Redis 1,redis是一个高性能的键值对存储方式的数据库,同时还提供list,set,zset,hash等数据结构的存储. 2,Redis运行在内存中但是可以持久化到磁盘,所以在对不同数据集 ...

  9. windows驱动开发-设备扩展

    设备对象Device_Object记录通用设备信息,另外一些信息记录在设备扩展里,设备扩展由程序员自己定义,由程序员指定内容和大小,由I/O管理器创建,并保存在非分页内存中. 驱动程序中,尽量避免使用 ...

  10. 1-7SpringBoot之表单验证@Valid

    SpringBoot提供了强大的表单验证功能实现,给我们省去了写验证的麻烦: 这里我们给下实例,提交一个有姓名和年龄的表单添加功能, 要求姓名不能为空,年龄必须是不小于18 : 我们先新建一个Stud ...