1 问题描述

何为Prim算法?

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

原理简单介绍:

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

2 解决方案

2.1 贪心法


本文具体编码使用数据参考自《算法设计与分析基础》第三版,下面是其具体图示:

package com.liuzhen.chapter8;

import java.util.ArrayList;

public class Prim {
/*
* 参数G:给定的图,其顶点分别为0~G.length-1,相应权值为具体元素的值
* 函数功能:返回构造生成的最小生成树,以二维数组形式表示,其中元素为0表示最小生成树的边
*/
public void getMinTree(int[][] G) {
int[][] result = G;
int[] vertix = new int[G.length]; //记录顶点是否被访问,如果已被访问,则置相应顶点的元素值为-2
for(int i = 0;i < G.length;i++)
vertix[i] = i;
ArrayList<Integer> listV = new ArrayList<Integer>(); //保存已经遍历过的顶点
listV.add(0); //初始随意选择一个顶点作为起始点,此处选择顶点0
vertix[0] = -2; //表示顶点0被访问
while(listV.size() < G.length) { //当已被遍历的顶点数等于给定顶点数时,退出循环
int minDistance = Integer.MAX_VALUE; //用于寻找最小权值,初始化为int最大值,相当于无穷大的意思
int minV = -1; //用于存放未被遍历的顶点中与已被遍历顶点有最小权值的顶点
int minI = -1; //用于存放已被遍历的顶点与未被遍历顶点有最小权值的顶点 ;即G[minI][minV]在剩余的权值中最小
for(int i = 0;i < listV.size();i++) { //i 表示已被访问的顶点
int v1 = listV.get(i);
for(int j = 0;j < G.length;j++) {
if(vertix[j] != -2) { //满足此条件的表示,顶点j未被访问
if(G[v1][j] != -1 && G[v1][j] < minDistance) {//G[v1][j]值为-1表示v1和j是非相邻顶点
minDistance = G[v1][j];
minV = j;
minI = v1;
}
}
}
}
vertix[minV] = -2;
listV.add(minV);
result[minI][minV] = 0;
result[minV][minI] = 0;
}
System.out.println("使用Prim算法,对于给定图中的顶点访问顺序为:");
System.out.println(listV);
System.out.println("使用Prim算法,构造的最小生成树的二维数组表示如下(PS:元素为0表示树的边):");
for(int i = 0;i < result.length;i++) {
for(int j = 0;j < result[0].length;j++)
System.out.print(result[i][j]+"\t");
System.out.println();
}
} public static void main(String[] args) {
Prim test = new Prim();
int[][] G = {{-1,3,-1,-1,6,5},
{3,-1,1,-1,-1,4},
{-1,1,-1,6,-1,4},
{-1,-1,6,-1,8,5},
{6,-1,-1,8,-1,2},
{5,4,4,5,2,-1}};
test.getMinTree(G);
}
}

运行结果:

使用Prim算法,对于给定图中的顶点访问顺序为:
[0, 1, 2, 5, 4, 3]
使用Prim算法,构造的最小生成树的二维数组表示如下(PS:元素为0表示树的边):
-1 0 -1 -1 6 5
-1 0 -1 -1 0
-1 0 -1 6 -1 4
-1 -1 6 -1 8 0
-1 -1 8 -1 0
0 4 0 0 -1

java实现Prim算法的更多相关文章

  1. 最小生成树(Prim算法)

    Java实现Prim算法 package com.java; import java.util.*; /** * 普里姆算法—Prim算法 * 算法思路:将图中所有的顶点分为两类:树顶点(已被选入生成 ...

  2. Prim算法(三)之 Java详解

    前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...

  3. 图的建立(邻接矩阵)+深度优先遍历+广度优先遍历+Prim算法构造最小生成树(Java语言描述)

    主要参考资料:数据结构(C语言版)严蔚敏   ,http://blog.chinaunix.net/uid-25324849-id-2182922.html   代码测试通过. package 图的建 ...

  4. 算法笔记_054:Prim算法(Java)

    目录 1 问题描述 2 解决方案 2.1 贪心法   1 问题描述 何为Prim算法? 此处引用网友博客中一段介绍(PS:个人感觉网友的这篇博客对于Prim算法讲解的很清楚,本文与之相区别的地方在于具 ...

  5. prim算法java版

    public class Prim { static int MAX = 65535; public static void prim(int[][] graph, int n){ char[] c ...

  6. 最小生成树のprim算法

    Problem A Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Sub ...

  7. Prim算法(一)之 C语言详解

    本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...

  8. HDU-1233 还是畅通工程 (prim 算法求最小生成树)

    prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. Kruskal和Prim算法求最小生成树

    Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...

随机推荐

  1. 新鲜出炉高仿网易云音乐 APP

    我的引语 晚上好,我是吴小龙同学,我的公众号「一分钟GitHub」会推荐 GitHub 上好玩的项目,一分钟 get 一个优秀的开源项目,挖掘开源的价值,欢迎关注我. 项目中成长是最快的,如何成长,就 ...

  2. SpringData:关联查询

    一.查询方式 1.导航式查询 使用“对象.属性”   进行查询:对于多的查询, 默认就是延迟加载,添加注解@Transactional 在OneToMany 注解中需要添加属性   fetch:值:F ...

  3. 20184302 实验三《Python程序设计》实验报告

    20184302 2019-2020-2 <Python程序设计>实验3报告 课程:<Python程序设计> 班级: 1843 姓名: 李新锐 学号:20184302 实验教师 ...

  4. 【Jmeter学习】【第一节】【Jmeter的安装】

    转载至https://www.cnblogs.com/qinlangsky/p/11941230.html 写的非常详细

  5. Spark aggregateByKey函数

    aggregateByKey与aggregate类似,都是进行两次聚合,不同的是后者只对分区有效,前者对分区中key进一步细分 def aggregateByKey[U: ClassTag](zero ...

  6. 解决yum 问题

    Dependencies Resolved Traceback (most recent call last): File "/usr/bin/yum", line 29, in ...

  7. Django之ORM对象关系模型

    MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的工作量,不需 ...

  8. MySQL(6)— 事务

    六.事务 ACID: 原子性.一致性.隔离性和持久性 原子性(atomicity) :一组事务,不能再细分了,其中的sql, 要么全部提交成功,要么全部失败回滚,不能只提交其中的一部分操作. 一致性( ...

  9. Java——java.lang.NullPointerException

    JavaCompiler compiler = ToolProvider.getSystemJavaCompiler(); StandardJavaFileManager fileManager = ...

  10. wordpress中文章发布时间不显示?用get_the_date代替the_date

    今天发现,在主题中部分地方使用the_date函数来显示文章发布的时间时,竟然发生不显示时间的情况,再仔细看了一下这些文章,有些都是经过几次修改和保存的,可能是由于the_date只是显示文章第一次发 ...