本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

  在基于geopandas的空间数据分析系列文章第8篇中,我们对geopandas开展空间计算的部分内容进行了介绍,涉及到缓冲区分析矢量数据简化仿射变换叠加分析空间融合等常见空间计算操作,而本文就将针对geopandas中剩余的其他常用空间计算操作进行介绍。

  本文是基于geopandas的空间数据分析系列文章的第9篇,也是整个系列文章主线部分内容的最后一篇,通过本文,你将学习到geopandas中的更多常用空间计算方法。

2 基于geopandas的空间计算

  承接上文内容,geopandas中封装的空间计算方法除了系列上一篇文章中介绍的那几种外,还有其他的几类,下面我们继续来学习:

2.1 空间连接

  类比常规表格数据的连接操作,在空间数据分析中也存在类似表连接的操作,譬如我们手头有一张包含设施点数据的矢量表,以及另一张包含行政区划面数据的矢量表,当我们想要通过某些操作来统计出每个行政区划面内部的设施点信息时,空间连接就可以非常方便快捷地实现这类需求。

  我们都清楚常规表格数据的连接,是按照设定的连接方式,将每张表中指定的某列或某些列数值相等的记录行合并为同一行,最后汇整成连接结果表返回:

图1

  而空间连接不同于常规表连接,其合并同一行的依据不是检查指定的列数值是否相等,而是基于不同矢量表其矢量列之间的空间拓扑关系,譬如相交、包含等。

图2

  在geopandas中我们利用sjoin函数来实现空间连接,其使用方式类似pandas中的merge接近,主要参数如下:

left_df:GeoDataFrame,传入空间连接对应的左表

right_df:GeoDataFrame,传入空间连接对应的右表

how:字符型,用于决定连接方式,'inner'表示内连接,且连接结果表中的矢量列来自左表;'left'表示左连接,且结果表中的矢量列来自左表;'right'表示右连接,最终结果表中的矢量列来自右表

op:字符型,用于设定拓扑判断的规则,'intersects'代表相交,即几何对象之间存在共有的边或内部点;'contains'代表包含,即一个几何对象至少有一个点位于另一个几何对象内部,且其本身没有任何点落在另一个结几何对象的外部;'within'表示在内部,是'contains'的相反情况,即左表被右表矢量'contains'

lsuffix:字符型,代表当左右表连接之后存在重名列时,为左表重名的列添加的后缀,默认为'left'

rsuffix:字符型,意义类似lsuffix,默认为'right'

  了解过sjoin()中的核心参数后,我们来通过实际例子理解它们的具体作用,how的作用与pandas中效果的一致,这里不多解读,我们来重点学习op各参数的不同效果:

  • 参数op

  intersects是空间连接中最常使用的模式,即相比较的两个几何对象有至少1个公共点就会被匹配上,下面我们以柏林公交站点数据为例,首先我们先读入柏林行政区划面数据,其中字段Gemeinde_n是每个行政区划的名称:

# 读入柏林行政区划面文件
Berlin = gpd.read_file('Berlin/Bezirke__Berlin.shp')
Berlin.head() # Gemeinde_n代表镇,即Berlin中每个面文件对应的行政区划名称

图3

  接着再读入柏林全部交通车站数据,其中fclass列代表对应车站的类别:

Berlin_transport = gpd.read_file('Berlin/gis_osm_transport_free_1.shp')
Berlin_transport.head()

图4

  对站点的空间分布进行可视化:

图5

  接着我们就利用sjoin()将区划面作为左表,站点作为右表,在op='intersects'参数设置下进行空间连接,再衔接groupby,以统计出各区划面内部的公交站点数量:

gpd.sjoin(left_df=Berlin,
right_df=Berlin_transport.query("fclass=='bus_stop'"),
op='intersects') \
.groupby('Gemeinde_n') \
.size()

图6

  再设置op='contains',因为进行连接的对象是左表面要素,右表点要素,所以这里的效果等价于op='intersects'

图7

  但当op='within'时,按照拓扑规则,如果依旧是左表面要素,右表点要素,得到的结果就会为空,反过来则正常:

图8

  类似的,其他类型几何对象之间的空间连接你也可以根据自己的需要进行操作,值得一提的是,利用sjoin()进行空间左、右、内连接时,因为结果表依旧是GeoDataFrame,所以只会保留一列矢量列,按照上文中参数介绍部分的描述,只有右连接时结果表中的矢量列才来自右表,但无论采取什么连接方式,结果表中未被保留的矢量列对应的index会被作为单独的一列保存下来,帮助我们可以按图索骥利用loc方式索引出需要的数据:

图9

2.2 拓扑关系判断

  geopandas中除了在上一篇文章中介绍的叠加分析以及上文介绍的空间连接中基于拓扑关系判断实现多表数据联动之外,还针对GeoSeriesGeoDataFrame设计了一系列方法,可以直接进行矢量数据之间的拓扑关系判断并返回对应的bool型判断结果,以contains()为例,在比较矢量数据之间拓扑关系时,矢量数据与待比较矢量数据之间主要有以下几种格式:

  • 长度n与长度1进行比较

  当主体矢量列长度为n,而输入待比较的矢量列长度为1时,返回的bool值是待比较矢量列与主题矢量列一一进行比较后的结果:

图10

  • 长度1与长度n进行比较

  与前面一种情况类似,只不过这里是将主体矢量列与待比较矢量列一一比较之后的结果:

图11

  • 长度m与长度m-n(n>0)进行比较

  这里所说的情况指主体矢量与待比较矢量长度都不为1,且主体矢量列的长度大于待比较矢量,这时返回的结果只会对主体矢量列前m-n个要素与待比较矢量对应位置一一比较,主体矢量被截断未能进行比较的部分默认返回False:

图12

  • 长度m-n(n>0)与长度n进行比较

  这时的情况就与前面一种类似,即从头开始两两位置匹配上的要素才会进行比较及结果的输出,多出的得不到匹配的要素会自动返回False:

图13

  geopandas中进行拓扑关系判断的基本原则了解完了,下面罗列出常用的一些拓扑关系判断API,均为GeoSeriesGeoDataFrame的方法:

intersects():检查相交关系

contains():检查包含关系,即主体矢量完全包裹住待比较的矢量且它们的边界互不接触,譬如面对点的包含

within():检查主体矢量是否在待检查矢量的内部

touches():检查触碰关系,即两个矢量之间至少有一个1个公共点,但它们的内部无任何相交区域

crosses():检查交叉关系,常见如线与线之间的交叉

disjoint():检查不相交关系,即两个矢量之间没有任何接触

geom_equals():检查是否完全相同

overlaps():检查重叠关系

2.3 空间裁切

  在空间数据分析中,裁切也是非常常用的操作,譬如我们想要获取某个公交站周围500米半径内部的路网矢量,就可以使用到裁切。

  在geopandas中我们可以使用clip()函数来基于蒙版矢量对目标矢量进行裁切,其主要参数如下:

gdfGeoDataFrameGeoSeries,代表将要被裁切的矢量数据集

maskGeoDataFrameGeoSeriesshapely中的PolygonMulti-Polygon对象,代表蒙版矢量

keep_geom_type:同叠加分析overlay中的同名参数

  基于实际例子进行演示,我们读入数据berlin_footway_WGS84.shp,包含了柏林全部的步道路网线数据,并转换到适合柏林地区的投影EPSG:32633

图14

  接下来我们从上文中使用到的柏林车站点数据中筛选出租车站点,与步道路网数据统一坐标参考系,生成500米缓冲区,并利用上一篇文章中介绍过的unary_union来得到MultiPolygon对象:

图15

  万事俱备,接下来我们使用clip()来裁切所有出租车站点500米缓冲区内部的步行道路网:

# 裁切所有出租车站点500米缓冲区内部的路网线数据
taxi_station_500buffer_roads = gpd.clip(gdf=Berlin_footway,
mask=taxi_station_500_buffer)

  在交互模式下同时绘制出缓冲区以及裁切出的路网:

图16

  可以看出我们需要的道路网都被正确裁切出来。

  • 与叠加分析进行对比

  需要注意的是,clip()中的mask参数,即蒙版矢量,无论是GeoDataFrame还是GeoSeries亦或是纯粹的shapely矢量,在执行裁切时,都会被整合为一个矢量对象整体,因此与之前文章介绍过的overlay()叠加分析有着本质上的不同。

  举个实际的例子,当我们想算出整个柏林被出租车站点500米缓冲区所覆盖的步道路网总长度时,可以在上文裁切计算结果的基础上直接求得:

图17

  但当我们想要针对每个站点求出各自500米缓冲区内部的步道路网长度时,就需要叠加分析,因为叠加分析的矢量叠置操作是在df1与df2各自行元素两两之间建立起的:

图18

  查看裁切与叠加分析分别结果表路网矢量总长度也可以看出叠加分析中的结果是针对每个站点分别计算的,因此对于彼此重叠的站点500米缓冲区就会出现重复重叠的路段:

图19

3 写在最后

  从2020年2月8日发布了geopandas空间数据分析系列第一篇文章,到今天这篇为止,geopandas中全部实用的主线内容(截至0.7.0版本),都在这断断续续撰写完成的9篇文章中介绍完毕,不敢说是geopandas中文资料里最好的,但穿插了众多例子和举一反三的内容,绝对是帮助大家理解学习geopandas非常实在的参考资料。

  撰写本系列文章的初衷,一是因为我对pandas的高度熟悉,二是由于喜欢编程,对ArcGIS之类主要靠点击相应按钮完成任务且容易出错的空间分析软件不太喜欢,所以在了解到有这么一个与pandas有着莫大渊源且可以做很多实用的空间计算操作的Python库时,萌发出浓郁的学习兴趣,便将整个对geopandas相关内容学习精进的过程记录下来,通过博客与微信公众号与广大的读者朋友共同交流学习,期间认识了很多业内大牛和朋友,收获了很多很多。

  geopandas是一个非常优秀的工具,它给了我们进行空间计算的多一种选择,我目前所有工作中涉及到的可以用geopandas解决的问题,都会在jupyter中建立顺滑的工作流。geopandas也是一个不断发展不断迭代优化的开源项目,本系列主线内容虽已完结,但之后关于geopandas相关的新特性或额外知识,依旧会不定期作为系列文章的补充,总结发布出来与大家分享。


  与热爱的技术一起成长

(数据科学学习手札88)基于geopandas的空间数据分析——空间计算篇(下)的更多相关文章

  1. (数据科学学习手札89)geopandas&geoplot近期重要更新

    本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 最近一段时间(本文写作于2020-07-1 ...

  2. (数据科学学习手札111)geopandas 0.9.0重要新特性一览

    本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在几天前,geopandas释放了其最新正式版 ...

  3. (数据科学学习手札146)geopandas中拓扑非法问题的发现、诊断与修复

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,geopandas作为在Pyt ...

  4. (数据科学学习手札129)geopandas 0.10版本重要新特性一览

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在前不久,我们非常熟悉的Python地理 ...

  5. (数据科学学习手札139)geopandas 0.11版本重要新特性一览

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,就在几天前,geopandas ...

  6. (数据科学学习手札75)基于geopandas的空间数据分析——坐标参考系篇

    本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结 ...

  7. (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)

    一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...

  8. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

  9. (数据科学学习手札80)用Python编写小工具下载OSM路网数据

    本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会 ...

随机推荐

  1. VC程序设计--文字输出方法与字体示例

    在用户窗口上输出一个扇形,并在扇面竖向输出一首唐诗.本例使用绝对定位确定输出文字的位置,并采用多种自定义字体输出文字. // poemDemo.cpp : 定义应用程序的入口点. // #includ ...

  2. ES6-json与字符串的转换

    1.ES5下的json 1.1 基本概念 是对象 简写形式,名字跟值(key和value)一样,留一个就行 方法 :function一块删 即show:function(){...}等价于show() ...

  3. Java实现洛谷 P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...

  4. Java实现 LeetCode 414 第三大的数

    414. 第三大的数 给定一个非空数组,返回此数组中第三大的数.如果不存在,则返回数组中最大的数.要求算法时间复杂度必须是O(n). 示例 1: 输入: [3, 2, 1] 输出: 1 解释: 第三大 ...

  5. Java实现 LeetCode 371 两整数之和

    371. 两整数之和 不使用运算符 + 和 - ​​​​​​​,计算两整数 ​​​​​​​a .b ​​​​​​​之和. 示例 1: 输入: a = 1, b = 2 输出: 3 示例 2: 输入: ...

  6. Java实现偶数矩阵(Even Parity, UVa 11464)

    偶数矩阵(Even Parity, UVa 11464) 问题描述 给你一个n×n的01矩阵(每个元素非0即1),你的任务是把尽量少的0变成1, 使得每个元素的上.下.左.右的元素(如果存在的话)之和 ...

  7. Java实现 蓝桥杯VIP 算法训练 邮票

    算法训练 邮票 时间限制:1.0s 内存限制:512.0MB 问题描述 给定一个信封,有N(1≤N≤100)个位置可以贴邮票,每个位置只能贴一张邮票.我们现在有M(M<=100)种不同邮资的邮票 ...

  8. Java实现 蓝桥杯VIP 算法提高 质数的后代

    算法提高 质数的后代 时间限制:1.0s 内存限制:256.0MB 问题描述 在上一季里,曾提到过质数的孤独,其实从另一个角度看,无情隔膜它们的合数全是质数的后代,因为合数可以由质数相乘结合而得. 如 ...

  9. Java实现 LeetCode 118 杨辉三角

    118. 杨辉三角 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: [ [1], [1,1], ...

  10. StringBuilder的线程为什么不安全

    StringBuffer和StringBuilder的区别在哪里? StringBuffer是线程安全的,StringBuilder是线程不安全的. 那么StringBuilder不安全在哪里?在想这 ...