poj2750 线段树 +DP Potted Flower
问题描述:给定一个环形序列,进行在线操作,每次修改一个元素,输出环上的最大连续子列的和,但不能是完全序列。
算法:把环从一个地方,切断拉成一条直线,用线段树记录当前区间的非空最大子列和当前区间的非空最小子列。
动态规划解决过静态的序列最大连续子序列和问题,时间复杂度可以达到 n(环形序列可能复杂度更高)。但是这里涉及到动态更新,更新频度很大,如果计算子序列和复杂度仍然是n,就会非常耗时。
如果环上的数都是正整数,答案是:环上数的总和-根结点的非空最小子列;否则,答案是:max{根结点的非空最大子列, 环上数的总和-根结点的非空最小子列}
一开始想到,如果将环从一点断开,那么最大和如果包括断点的最后一个点和第一个点,那该如何求
,仔细看了一下 ,终于向明白了,如果 段的最大自序列包括 断点 那么断点一定是正数;
那么 环上数的总和-根结点的非空最小子列,就将断点包括了。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; #define maxn 100005 int maxsub[maxn<<2], minsub[maxn<<2];
int lmax[maxn<<2], rmax[maxn<<2];
int lmin[maxn<<2], rmin[maxn<<2];
int sum[maxn<<2]; void PushUp(int rt) {
int l = rt<<1;
int r = l+1;
sum[rt] = sum[l] + sum[r];
maxsub[rt] = max(max(maxsub[l], maxsub[r]), rmax[l]+lmax[r]);
minsub[rt] = min(min(minsub[l], minsub[r]), rmin[l]+lmin[r]);
lmax[rt] = max(lmax[l], sum[l]+lmax[r]);
rmax[rt] = max(rmax[r], sum[r]+rmax[l]);
lmin[rt] = min(lmin[l], sum[l]+lmin[r]);
rmin[rt] = min(rmin[r], sum[r]+rmin[l]);
} void build(int l, int r, int rt) {
if (l == r) {
scanf("%d", &sum[rt]);
minsub[rt] = lmax[rt] = rmax[rt] = lmin[rt] = rmin[rt] = maxsub[rt] = sum[rt];
return;
}
int m = (l+r)>>1;
build(l, m, rt<<1);
build(m+1, r, rt<<1|1);
PushUp(rt);
} void update(int target, int val, int l, int r, int rt) {
if (l == r) {
sum[rt] = maxsub[rt] = minsub[rt] = val;
lmax[rt] = rmax[rt] = lmin[rt] = rmin[rt] = val;
return;
}
int m = (l+r)>>1;
if (m >= target) update(target, val, l, m, rt<<1);
else update(target, val, m+1, r, rt<<1|1);
PushUp(rt);
} int main()
{
int n, m, ans; scanf ("%d", &n);
build(1, n, 1);
scanf("%d", &m);
while (m--) {
int a, b;
scanf ("%d%d", &a, &b);
update(a, b, 1, n, 1);
if (sum[1] == maxsub[1]) //序列全为非负数的时候
ans = sum[1] - minsub[1];
else ans = max(maxsub[1], sum[1]-minsub[1]);
printf ("%d\n", ans);
}
return 0;
}
poj2750 线段树 +DP Potted Flower的更多相关文章
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- POJ 2750 Potted Flower(线段树+dp)
题目链接 虽然是看的别的人思路,但是做出来还是挺高兴的. 首先求环上最大字段和,而且不能是含有全部元素.本来我的想法是n个元素变为2*n个元素那样做的,这样并不好弄.实际可以求出最小值,总和-最小,就 ...
- lightoj1085 线段树+dp
//Accepted 7552 KB 844 ms //dp[i]=sum(dp[j])+1 j<i && a[j]<a[i] //可以用线段树求所用小于a[i]的dp[j ...
- [CF 474E] Pillars (线段树+dp)
题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...
- HDU-3872 Dragon Ball 线段树+DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3872 题意:有n个龙珠按顺序放在一列,每个龙珠有一个type和一个权值,要求你把这n个龙珠分成k个段, ...
- HDU4521+线段树+dp
题意:在一个序列中找出最长的某个序列.找出的序列满足题中的条件. 关键:对于 第 i 个位置上的数,要知道与之相隔至少d的位置上的数的大小.可以利用线段树进行统计,查询.更新的时候利用dp的思想. / ...
- Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP
题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...
- Special Subsequence(离散化线段树+dp)
Special Subsequence Time Limit: 5 Seconds Memory Limit: 32768 KB There a sequence S with n inte ...
随机推荐
- linux shell的输出效果修改方法(界面颜色)
文本终端的颜色可以使用“ANSI非常规字符序列”来生成.举例: echo -e "\033[44;37;5m ME \033[0m COOL" 以上命令设置背景成为蓝色,前景白色, ...
- jquery select处理
JQuery 绑定select标签的onchange事件,弹出选择的值,并实现跳转.传参 js 处理 select :选中,删除,更改等 http://blog.csdn.net/wust_star/ ...
- java基础知识回顾之接口
/* abstract class AbsDemo { abstract void show1(); abstract void show2(); } 当一个抽象类中的方法都是抽象的时候,这时可以将该 ...
- [Sharepoint]备份 迁移 还原
在sharepoint 的备份当中,一般分为一个sharepoint 站点的备份和sharepoint 整个站点的备份.我们可以用sharepoint designer 进行备份, 也可以用 stsa ...
- C#中的 序列化和反序列化
什么是序列化和反序列化? 序列化就是把一个对象保存到一个文件或数据库字段中去,反序列化就是在适当的时候把这个文件再转化成原来的对象使用. 我想最主要的作用有: 1.在进程下次启动时读取上次保存的对象的 ...
- Java集合框架(三)
Map Map集合:该集合存储键值对,一对一对的往里存,而且要保证键的唯一性. Map |------HashTable:底层是哈希表数据结构,不可以存入null键null值.该集合是线程同步的.J ...
- 用Python+Django在Eclipse环境下开发web网站【转】
一.创建一个项目如果这是你第一次使用Django,那么你必须进行一些初始设置.也就是通过自动生成代码来建立一个Django项目--一个Django项目的设置集,包含了数据库配置.Django详细选项设 ...
- linux下ssh/scp无密钥登陆方法
一.双方机器都是root用户登陆方法 A为本地主机(即用于控制其他主机的机器) ;B为远程主机(即被控制的机器Server), 假如ip为192.168.60.110;A和B的系统都是Linux 在A ...
- spring_150806_hibernate_non_transaction
添加hibernate的相关jar包! 实体类: package com.spring.model; import javax.persistence.Entity; import javax.per ...
- Android Non-UI to UI Thread Communications(Part 1 of 5)
original:http://www.intertech.com/Blog/android-non-ui-to-ui-thread-communications-part-1-of-5/ ANDRO ...