[geeksforgeeks] Bottom View of a Binary Tree
http://www.geeksforgeeks.org/bottom-view-binary-tree/
Bottom View of a Binary Tree
Given a Binary Tree, we need to print the bottom view from left to right. A node x is there in output if x is the bottommost node at its horizontal distance. Horizontal distance of left child of a node x is equal to horizontal distance of x minus 1, and that of right child is horizontal distance of x plus 1.
Examples:
20
/ \
8 22
/ \ \
5 3 25
/ \
10 14
For the above tree the output should be 5, 10, 3, 14, 25.
If there are multiple bottom-most nodes for a horizontal distance from root, then print the later one in level traversal. For example, in the below diagram, 3 and 4 are both the bottom-most nodes at horizontal distance 0, we need to print 4.
20
/ \
8 22
/ \ / \
5 3 4 25
/ \
10 14
For the above tree the output should be 5, 10, 4, 14, 25.
解决思路:算出二叉树最左边节点的距离,在算出二叉树最右边节点的距离,可以得出这棵二叉树所有节点的距离范围,如果根节点的水平距离为9,那么上边两个二叉树的距离范围是[-2, 2]。也就是说,输出节点应该有5个。那么怎么算每个节点的水平距离?首先要层次遍历二叉树,根据规则,根节点的左边孩子的水平距离是根节点水平距离减1,根节点右边孩子水平距离是根节点水平距离加1,层次遍历二叉树过程中,就算出了每个节点的水平距离,但是要求输出的水平距离只对应一个节点,所以要留下水平距离值相同的最后一个节点,用map可以做到。
http://blog.csdn.net/zzran/article/details/41981969
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <limits.h>
using namespace std; void printArray(int *array, int size)
{
for(int i = ; i < size; i++)
cout << array[i]<< "\t" ;
cout << endl;
} void printVector(vector<int> array )
{
for(int i = ; i <array.size(); i++)
cout << array[i]<< "\t" ;
cout << endl;
} struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; void preorder(TreeNode * root)
{
if(root == NULL) return;
cout << root->val << "\t" ;
preorder(root->left);
preorder(root->right);
} void inorder(TreeNode * root)
{
if(root == NULL) return;
inorder(root->left);
cout << root->val << "\t" ;
inorder(root->right);
} void postorder(TreeNode * root)
{
if(root == NULL) return;
postorder(root->left);
postorder(root->right);
cout << root->val << "\t" ;
} struct newNode
{
TreeNode* m_node;
int m_idx;
newNode(TreeNode* node, int idx)
{
m_node = node;
m_idx = idx;
}
}; class Solution {
public:
vector<int> bottomView(TreeNode* root) {
queue<newNode* > q1;
queue<newNode* > q2;
vector<int> res;
map<int, int> mapping;// index -- value pair if(root != NULL)
{
q1.push(new newNode(root, ));
} int leftMost = ;
int rightMost = ;
while(!q1.empty())
{
newNode * p = q1.front();
q1.pop(); mapping[p->m_idx] = p->m_node->val; if(p->m_idx < leftMost)
leftMost = p->m_idx;
if(p->m_idx > rightMost)
rightMost = p->m_idx; if(p->m_node->left)
q2.push(new newNode(p->m_node->left, p->m_idx - ) );
if(p->m_node->right)
q2.push(new newNode(p->m_node->right, p->m_idx + )); if(q1.empty() /*&& !q2.empty()*/)
{
swap(q1, q2);
}
} for(map<int, int>::iterator it = mapping.begin(); it != mapping.end(); it++)
{
cout << it->first <<"\t" <<it->second << endl;
}
for(int i = leftMost ; i <= rightMost ; i++)
res.push_back(mapping[i]);
return res;
} }; int main()
{
TreeNode node0();
TreeNode node1();
TreeNode node2();
TreeNode node3();
TreeNode node4();
TreeNode node5();
TreeNode node6(); node0.left = &node1;
node0.right= &node2; node1.left = &node3;
node1.right= &node4; node2.left = &node5;
node2.right= &node6; Solution sl;
vector<int> res = sl.bottomView(&node0); printVector(res);
cout << endl;
return ;
}
另外,top view也可以用这样的方法,不是保留最后一个,而是保留第一次idx的结构,后续的数据不保存。
[geeksforgeeks] Bottom View of a Binary Tree的更多相关文章
- 【LeetCode】199. Binary Tree Right Side View
Binary Tree Right Side View Given a binary tree, imagine yourself standing on the right side of it, ...
- 【刷题-LeetCode】199 Binary Tree Right Side View
Binary Tree Right Side View Given a binary tree, imagine yourself standing on the right side of it, ...
- [geeksforgeeks] Convert a given Binary Tree to Doubly Linked List
http://www.geeksforgeeks.org/in-place-convert-a-given-binary-tree-to-doubly-linked-list/ Given a Bin ...
- Print Nodes in Top View of Binary Tree
Top view of a binary tree is the set of nodes visible when the tree is viewed from the top. Given a ...
- Convert a given Binary Tree to Doubly Linked List
The question and solution are from: http://www.geeksforgeeks.org/convert-given-binary-tree-doubly-li ...
- leetcode 199 :Binary Tree Right Side View
// 我的代码 package Leetcode; /** * 199. Binary Tree Right Side View * address: https://leetcode.com/pro ...
- [leetcode]199. Binary Tree Right Side View二叉树右侧视角
Given a binary tree, imagine yourself standing on the right side of it, return the values of the nod ...
- [LeetCode] 199. Binary Tree Right Side View 二叉树的右侧视图
Given a binary tree, imagine yourself standing on the right side of it, return the values of the nod ...
- LeetCode 199. 二叉树的右视图(Binary Tree Right Side View)
199. 二叉树的右视图 199. Binary Tree Right Side View 题目描述 给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值. Giv ...
随机推荐
- Sublime Text生成html标签快捷键
Emmet Documentation Syntax Child: > nav>ul>li <nav> <ul> <li></li> ...
- (转)Android系统自带Activity样式(@android:style/)
在AndroidManifest.xml文件的activity中配置 1.android:theme="@android:style/Theme" 默认状态,即如果theme这里不 ...
- 关联参数(&的用法)
<?php header("Content-Type:text/html;charset=gb2312"); function test1(&$a){ $a.=&qu ...
- 19.python的编码问题
在正式说明之前,先给大家一个参考资料:戳这里 文章的内容参考了这篇资料,并加以总结,为了避免我总结的不够完善,或者说出现什么错误的地方,有疑问的地方大家可以看看上面那篇文章. 以下说明是针对于pyth ...
- hdu 5166 Missing number
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5166 Missing number Description There is a permutatio ...
- OC中实例变量可见度、setter、getter方法和自定义初始化方法
在对类和对象有一定了解之后,我们进一步探讨实例变量的可见度等相关知识 实例变量的可见度分为三种情况:public(共有),protected(受保护的,默认),private(私有的),具体的不同和特 ...
- PHP闭包(Closure)初探
不知不觉发现PHP已经出到了5.5版本,而自己一直在用PHP5.2,让我看起来像深山出来的小伙子一样,又土又落后.在我习惯在javascript中使用闭包之后,忽然间对PHP的闭包打起了兴趣. 于是乎 ...
- [转]强悍的跨平台开源多媒体中心XBMC介绍
[转]强悍的跨平台开源多媒体中心XBMC介绍 http://www.cnblogs.com/mythou/p/3220898.html 最近都在了解Android下的音视频,因为最近需要做一个多媒体中 ...
- STL学习系列四:Stack容器
Stack简介 stack是堆栈容器,是一种“先进后出”的容器. stack是简单地装饰deque容器而成为另外的一种容器. #include <stack> 1.stack对象的默认构造 ...
- XAML中ContentControl,ItemsControl,DataTemplate之间的联系和区别
接触XAML很久了,但一直没有深入学习.今天学习了如标题所示的内容,所以来和大家分享一下,或者准确的说是自我回顾一遍. 在XAML中,有两类我们常见的控件,分别是ContentControl和Item ...