#include <iostream>
using namespace std; long long power(long long a, long long b, long long m); int main()
{
//freopen("acm.acm","r",stdin);
int test;
long long sum;
long long a;
long long b;
long long m;
long long n;
int i;
cin>>test;
while(test --)
{
sum = ;
cin>>m;
cin>>n;
for(i = ; i < n; ++ i)
{
cin>>a>>b;
sum += power(a,b,m);
} cout<<sum%m<<endl;
}
} long long power(long long a, long long b, long long m)//快速幂取模加速~
{
long long ret = ;
while (b)
{
if (b & )//如果把b化成二进制的话,是否 最低位是1
{
ret *= a;
ret %= m;
}
a *= a;
a %= m;
b >>= ; //右移
}
return ret;
}

关注我的公众号,当然,如果你对Java, Scala, Python等技术经验,以及编程日记,感兴趣的话。

技术网站地址: vmfor.com

POJ 1995的更多相关文章

  1. poj 1995 裸快速幂

    1. poj 1995  Raising Modulo Numbers 2.链接:http://poj.org/problem?id=1995 3.总结:今天七夕,来发水题纪念一下...入ACM这个坑 ...

  2. POJ 1995 快速幂模板

    http://poj.org/problem?id=1995 简单的快速幂问题 要注意num每次加过以后也要取余,否则会出问题 #include<iostream> #include< ...

  3. 快速幂取模(POJ 1995)

    http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c ...

  4. 【POJ 1995】 Raising Modulo Numbers

    [题目链接] http://poj.org/problem?id=1995 [算法] 快速幂 [代码] #include <algorithm> #include <bitset&g ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. POJ 1995 Raising Modulo Numbers(快速幂)

    嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...

  7. Mathematics:Raising Modulo Numbers(POJ 1995)

    阶乘总和 题目大意:要你算一堆阶乘对m的模... 大水题,对指数二分就可以了... #include <iostream> #include <functional> #inc ...

  8. poj 1995 Raising Modulo Numbers【快速幂】

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5477   Accepted: ...

  9. Raising Modulo Numbers(POJ 1995 快速幂)

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5934   Accepted: ...

随机推荐

  1. C++类实现三维数组算法

    在学习北京大学教授的<程序设计实习 / Practice on Programming>中,遇到了一个习题,花了很长时间研究,现在分享出来: 课题地址:https://class.cour ...

  2. Kettle行列转换

    Kettle在控件中拥有行列转换功能,但是行列转换貌似是弄反了. 一.行转列 1.数据库脚本 create TABLE StudentInfo ( studentno int, subject ), ...

  3. Linux开机启动程序详解

    Linux开机启动程序详解我们假设大家已经熟悉其它操作系统的引导过程,了解硬件的自检引导步骤,就只从Linux操作系统的引导加载程序(对个人电脑而言通常是LILO)开始,介绍Linux开机引导的步骤. ...

  4. 嵌入式web服务

    :boa.thttpd.mini_httpd.shttpd.lighttpd.goaheand.appweb和apache等. Boa 1.介绍 Boa诞生于1991年,作者Paul Philips. ...

  5. Objective - C中属性和点语法的使用

    一.属性        属性是Objective—C 2.0定义的语法,为实例变量提供了setter.getter方法的默认实现能在一定程度上简化程序代码,并且增强实例变量的访问安全性         ...

  6. Objective-C 内存管理原则

    内存管理方针 用于内存管理的基本模型采用引用计数的环境之中提供的组合方法中定义在NSObject协议和标准方法的命名约定.NSObject类也定义了一个方法:dealloc,当调用一个对象时自动回收, ...

  7. ExtJS FormPanel不执行校验

    经检查问题原因在于使用了 validator 属性. 使用validator属性,必须添加返回值.不添加返回值,就会出现FormPanel不执行校验的问题.

  8. Spark 3000门徒第二课scala面向对象总结

    昨晚听了王家林老师3000门徒spark系列课程的第二课,讲述了scala面向对象知识,并且带着过了一遍Spark核心类:SparkContent,RDD的代码,下面写一下心得: RDD是抽象类,实现 ...

  9. 如何让webapi只返回json格式数据

    最近脑子不好用,总记不住事,以前搞过让webapi只返回json格式的数据,今天有人问我又突然想不起了,后来总结一下,备忘一下,大概有下面几种处理方式 1.在WebApiConfig类的Registe ...

  10. Entity Framework 学习第一天 续

    改写第一天的增删改查方法,观察增删改查的本质 using System; using System.Collections.Generic; using System.Data.Entity.Infr ...