链接

繁琐。

处理出来所有的线段,再判断相交。

对于正方形的已知对角顶点求剩余两顶点 (列出4个方程求解)

p[].x=(p[].x+p[].x+p[].y-p[].y)/;
p[].y=(p[].y+p[].y+p[].x-p[].x)/;
p[].x=(p[].x+p[].x-p[].y+p[].y)/;
p[].y=(p[].y+p[].y-p[].x+p[].x)/;
 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define N 600
#define LL long long
#define INF 0xfffffff
#define zero(x) (((x)>0?(x):-(x))<eps)
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
map<string,int>f;
vector<int>ed[];
int g;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[];
typedef point pointt;
pointt operator -(point a,point b)
{
return pointt(a.x-b.x,a.y-b.y);
}
struct line
{
pointt u,v;
int flag;
char c;
} li[N];
vector<line>dd[];
char s1[],s2[],s[];
int dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
point rotate(point a,double rad)
{
return point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double dis(point a)
{
return sqrt(dot(a,a));
}
double angle(point a,point b)
{
return acos(dot(a,b)/dis(a)/dis(b));
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
} double xmult(point p1,point p2,point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//判三点共线
int dots_inline(point p1,point p2,point p3)
{
return zero(xmult(p1,p2,p3));
} //判点是否在线段上,包括端点
int dot_online_in(point p,point l1,point l2)
{
return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
} //判两点在线段同侧,点在线段上返回0 int same_side(point p1,point p2,point l1,point l2)
{
return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
} //判两线段相交,包括端点和部分重合 int intersect_in(point u1,point u2,point v1,point v2)
{
if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
}
void init(int kk,char c)
{
int i;
int k = c-'A';
if(kk==)
{
for(i = ; i <= ; i+=)
{
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
}
p[].x=(p[].x+p[].x+p[].y-p[].y)/;
p[].y=(p[].y+p[].y+p[].x-p[].x)/;
p[].x=(p[].x+p[].x-p[].y+p[].y)/;
p[].y=(p[].y+p[].y-p[].x+p[].x)/;
p[] = p[];
for(i = ; i < ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
for(i = ; i <= ; i++)
{
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
}
point pp = point((p[].x+p[].x),(p[].y+p[].y));
p[] = point(pp.x-p[].x,pp.y-p[].y);
//printf("%.3f %.3f\n",p[4].x,p[4].y);
p[] = p[];
for(i = ; i <= ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
for(i = ; i <= ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
li[++g].u = p[];
li[g].v = p[];
li[g].c = c;
dd[k].push_back(li[g]);
}
else if(kk==)
{
for(i = ; i <= ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
p[] = p[];
for(i = ; i <= ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
int n;
scanf("%d",&n);
for(i = ; i <= n ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
p[n+] = p[];
for(i = ; i <= n ; i++)
{
li[++g].u= p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
} int main()
{
f["square"] = ;
f["rectangle"] = ;
f["line"] = ;
f["triangle"] = ;
f["polygon"] = ;
int i,j,k;
while(scanf("%s",s1)!=EOF)
{
if(s1[]=='.') break;
if(s1[]=='-') continue;
for(i = ; i < ; i++)
{
ed[i].clear();
dd[i].clear();
}
g = ;
k=;
scanf("%s",s2);
s[++k] = s1[];
init(f[s2],s1[]);
while(scanf("%s",s1)!=EOF)
{
if(s1[]=='-') break;
//cout<<s1<<endl;
scanf("%s",s2);
s[++k] = s1[];
init(f[s2],s1[]);
}
//cout<<g<<endl;
sort(s+,s+k+);
for(i = ; i <= k; i++)
{
int u,v;
u = s[i]-'A';
//cout<<u<<" "<<dd[u].size()<<endl;
for(j = i+; j <= k ; j++)
{
v = s[j]-'A';
int flag = ;
for(int ii = ; ii < dd[u].size() ; ii++)
{
for(int jj = ; jj < dd[v].size() ; jj++)
{
if(intersect_in(dd[u][ii].u,dd[u][ii].v,dd[v][jj].u,dd[v][jj].v))
{ flag = ;
break;
}
// if(u==5&&v==22)
// {
// output(dd[u][ii].u);
// output(dd[u][ii].v);
// output(dd[v][jj].u);
// output(dd[v][jj].v);
// }
}
if(flag) break;
}
if(flag)
{
ed[u].push_back(v);
ed[v].push_back(u);
}
}
}
for(i = ; i <= k; i++)
{
int u = s[i]-'A';
if(ed[u].size()==)
printf("%c has no intersections\n",s[i]);
else
{ sort(ed[u].begin(),ed[u].end());
if(ed[u].size()==)
printf("%c intersects with %c\n",s[i],ed[u][]+'A');
else if(ed[u].size()==)
printf("%c intersects with %c and %c\n",s[i],ed[u][]+'A',ed[u][]+'A');
else
{
printf("%c intersects with ",s[i]);
for(j = ; j < ed[u].size()- ; j++)
printf("%c, ",ed[u][j]+'A');
printf("and %c\n",ed[u][j]+'A');
}
}
}
puts("");
}
return ;
}

poj3449Geometric Shapes的更多相关文章

  1. 十二、shapes

    1. The control points are attributes on the shape which are usually arrays of points. Control points ...

  2. Allegro Out Of Date Shapes原因及解决方法

    使用Allegro设计PCB板时,查看Status,经常会遇到out of date shapes的警告信息,具体如下: dynamic shape is still out of data or e ...

  3. Topology Shapes of OpenCascade BRep

    Topology Shapes of OpenCascade BRep eryar@163.com 摘要Abstract:通过对OpenCascade中的BRep数据的读写,理解边界表示法的概念及实现 ...

  4. graphviz - Node Shapes

    Node Shapes There are three main types of shapes : polygon-based, record-based and user-defined. The ...

  5. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  6. Geometric Shapes - POJ 3449(多边形相交)

    题目大意:给一些几何图形的编号,求出来这些图形都和那些相交.   分析:输入的正方形对角线上的两个点,所以需要求出来另外两个点,公式是: x2:=(x1+x3+y3-y1)/2; y2:=(y1+y3 ...

  7. 详细分析Orchard的Content、Drivers, Shapes and Placement 类型

    本文原文来自:http://skywalkersoftwaredevelopment.net/blog/a-closer-look-at-content-types-drivers-shapes-an ...

  8. POJ 3449 Geometric Shapes (求正方形的另外两点)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1470   Accepted: 622 D ...

  9. 解决gerber-Failed to Match All Shapes for PCB问题

    有效解决在Protel 99se导gerber时提示gerber-Failed to Match All Shapes for PCB出错问题如图 这种问题很好解决,打开这个窗口 操作方法如下图Emb ...

随机推荐

  1. 关于left join、right join和inner join

    总结, 1.select * from A left join B on A.XX=B.XX 左侧显示A的列名,右侧显示B的列名 左侧,显示A表的所有列 右侧, A.XX=B.XX的时候,显示B表的列 ...

  2. YTU 2297: KMP模式匹配 三(串)

    2297: KMP模式匹配 三(串) 时间限制: 1 Sec  内存限制: 128 MB 提交: 25  解决: 16 [提交][状态][讨论版] [Edit] [TestData] 题目描述 输入一 ...

  3. c# UDP通信 列子

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  4. Rigidbody.position/rotation更新测试

    Rigidbody.position/rotation主要提供在下一个物理步之前更新物理位置,一般用于SweepTest这样的接口 那么测试一下会不会修改掉transform.position的值 测 ...

  5. java学习容器

    自己模拟ArrayList: private Object[] elementData; private int size; // 可以指定集合大小,默认10 public MyArrayList(i ...

  6. Android mvp模式、mvvm模式

    MVC和MVP的区别2007年08月08日 星期三 上午 09:23 MVC和MVP到底有什么区别呢? 从这幅图可以看到,我们可以看到在MVC里,View是可以直接访问Model的!从而,View里会 ...

  7. COGS502. 长路上的灯

    502. 长路上的灯 ☆   输入文件:light.in   输出文件:light.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 在一条无限长的路上,有一排无限长的路 ...

  8. (转)jquery对表单元素的取值和赋值

    /*获得text的值*/ var textval =$("#text_id").attr("value"); //或者 var textval =$(" ...

  9. 利用JAVA Service Wrapper把JAVA程序做成windows服务

    今天做了一个读取数据入库的程序.由于读取的数据每天都更新,于是就想把程序做成一个服务,每天定时执行.研究了一下,发现有几种方式可以做.下面我主要记录一下JAVA Service Wrapper方式. ...

  10. ContentProvider官方教程(8)自定义MIME

    MIME Type Reference Content providers can return standard MIME media types, or custom MIME type stri ...