链接

繁琐。

处理出来所有的线段,再判断相交。

对于正方形的已知对角顶点求剩余两顶点 (列出4个方程求解)

p[].x=(p[].x+p[].x+p[].y-p[].y)/;
p[].y=(p[].y+p[].y+p[].x-p[].x)/;
p[].x=(p[].x+p[].x-p[].y+p[].y)/;
p[].y=(p[].y+p[].y-p[].x+p[].x)/;
 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define N 600
#define LL long long
#define INF 0xfffffff
#define zero(x) (((x)>0?(x):-(x))<eps)
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
map<string,int>f;
vector<int>ed[];
int g;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[];
typedef point pointt;
pointt operator -(point a,point b)
{
return pointt(a.x-b.x,a.y-b.y);
}
struct line
{
pointt u,v;
int flag;
char c;
} li[N];
vector<line>dd[];
char s1[],s2[],s[];
int dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
point rotate(point a,double rad)
{
return point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double dis(point a)
{
return sqrt(dot(a,a));
}
double angle(point a,point b)
{
return acos(dot(a,b)/dis(a)/dis(b));
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
} double xmult(point p1,point p2,point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//判三点共线
int dots_inline(point p1,point p2,point p3)
{
return zero(xmult(p1,p2,p3));
} //判点是否在线段上,包括端点
int dot_online_in(point p,point l1,point l2)
{
return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
} //判两点在线段同侧,点在线段上返回0 int same_side(point p1,point p2,point l1,point l2)
{
return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
} //判两线段相交,包括端点和部分重合 int intersect_in(point u1,point u2,point v1,point v2)
{
if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
}
void init(int kk,char c)
{
int i;
int k = c-'A';
if(kk==)
{
for(i = ; i <= ; i+=)
{
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
}
p[].x=(p[].x+p[].x+p[].y-p[].y)/;
p[].y=(p[].y+p[].y+p[].x-p[].x)/;
p[].x=(p[].x+p[].x-p[].y+p[].y)/;
p[].y=(p[].y+p[].y-p[].x+p[].x)/;
p[] = p[];
for(i = ; i < ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
for(i = ; i <= ; i++)
{
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
}
point pp = point((p[].x+p[].x),(p[].y+p[].y));
p[] = point(pp.x-p[].x,pp.y-p[].y);
//printf("%.3f %.3f\n",p[4].x,p[4].y);
p[] = p[];
for(i = ; i <= ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
for(i = ; i <= ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
li[++g].u = p[];
li[g].v = p[];
li[g].c = c;
dd[k].push_back(li[g]);
}
else if(kk==)
{
for(i = ; i <= ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
p[] = p[];
for(i = ; i <= ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
int n;
scanf("%d",&n);
for(i = ; i <= n ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
p[n+] = p[];
for(i = ; i <= n ; i++)
{
li[++g].u= p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
} int main()
{
f["square"] = ;
f["rectangle"] = ;
f["line"] = ;
f["triangle"] = ;
f["polygon"] = ;
int i,j,k;
while(scanf("%s",s1)!=EOF)
{
if(s1[]=='.') break;
if(s1[]=='-') continue;
for(i = ; i < ; i++)
{
ed[i].clear();
dd[i].clear();
}
g = ;
k=;
scanf("%s",s2);
s[++k] = s1[];
init(f[s2],s1[]);
while(scanf("%s",s1)!=EOF)
{
if(s1[]=='-') break;
//cout<<s1<<endl;
scanf("%s",s2);
s[++k] = s1[];
init(f[s2],s1[]);
}
//cout<<g<<endl;
sort(s+,s+k+);
for(i = ; i <= k; i++)
{
int u,v;
u = s[i]-'A';
//cout<<u<<" "<<dd[u].size()<<endl;
for(j = i+; j <= k ; j++)
{
v = s[j]-'A';
int flag = ;
for(int ii = ; ii < dd[u].size() ; ii++)
{
for(int jj = ; jj < dd[v].size() ; jj++)
{
if(intersect_in(dd[u][ii].u,dd[u][ii].v,dd[v][jj].u,dd[v][jj].v))
{ flag = ;
break;
}
// if(u==5&&v==22)
// {
// output(dd[u][ii].u);
// output(dd[u][ii].v);
// output(dd[v][jj].u);
// output(dd[v][jj].v);
// }
}
if(flag) break;
}
if(flag)
{
ed[u].push_back(v);
ed[v].push_back(u);
}
}
}
for(i = ; i <= k; i++)
{
int u = s[i]-'A';
if(ed[u].size()==)
printf("%c has no intersections\n",s[i]);
else
{ sort(ed[u].begin(),ed[u].end());
if(ed[u].size()==)
printf("%c intersects with %c\n",s[i],ed[u][]+'A');
else if(ed[u].size()==)
printf("%c intersects with %c and %c\n",s[i],ed[u][]+'A',ed[u][]+'A');
else
{
printf("%c intersects with ",s[i]);
for(j = ; j < ed[u].size()- ; j++)
printf("%c, ",ed[u][j]+'A');
printf("and %c\n",ed[u][j]+'A');
}
}
}
puts("");
}
return ;
}

poj3449Geometric Shapes的更多相关文章

  1. 十二、shapes

    1. The control points are attributes on the shape which are usually arrays of points. Control points ...

  2. Allegro Out Of Date Shapes原因及解决方法

    使用Allegro设计PCB板时,查看Status,经常会遇到out of date shapes的警告信息,具体如下: dynamic shape is still out of data or e ...

  3. Topology Shapes of OpenCascade BRep

    Topology Shapes of OpenCascade BRep eryar@163.com 摘要Abstract:通过对OpenCascade中的BRep数据的读写,理解边界表示法的概念及实现 ...

  4. graphviz - Node Shapes

    Node Shapes There are three main types of shapes : polygon-based, record-based and user-defined. The ...

  5. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  6. Geometric Shapes - POJ 3449(多边形相交)

    题目大意:给一些几何图形的编号,求出来这些图形都和那些相交.   分析:输入的正方形对角线上的两个点,所以需要求出来另外两个点,公式是: x2:=(x1+x3+y3-y1)/2; y2:=(y1+y3 ...

  7. 详细分析Orchard的Content、Drivers, Shapes and Placement 类型

    本文原文来自:http://skywalkersoftwaredevelopment.net/blog/a-closer-look-at-content-types-drivers-shapes-an ...

  8. POJ 3449 Geometric Shapes (求正方形的另外两点)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1470   Accepted: 622 D ...

  9. 解决gerber-Failed to Match All Shapes for PCB问题

    有效解决在Protel 99se导gerber时提示gerber-Failed to Match All Shapes for PCB出错问题如图 这种问题很好解决,打开这个窗口 操作方法如下图Emb ...

随机推荐

  1. 实现Ecshop商品跳到淘宝、京东等的购买链接

    今天简单的实现了一下ecshop商品导出到第三方的购买链接功能.大致思路是给商品添加一个buy_link的text字段,存为json结构,然后通过json解析输出到商品购买页面 1.添加字段 增加购买 ...

  2. RecycleView使用的那些坑

    1.为条目设置margin值时,在6.0系统上会无效.此时在item的根外面套一层viewgroup解决. 2.当条目中有imageview时,必须给imageview设置 src或者backgrou ...

  3. 在Java中导出word、excel格式文件时JSP页面头的设置

    我们在JSP中往往会把一些表格里的东西需要导出到本地,一般都是导成word.excel格式的文件.这只需要在JSP页面头设置及在<head></head>标签中添加下面的代码: ...

  4. 通过spring工厂读取property配置文件

    /** * Created by ywq on 2016/6/30. */ @Named public class PropertyConfig { private static AbstractBe ...

  5. PHP中cookie和Session

    Cookie与Session cookie 列子 if(!isset($_COOKIE['cookie'])){ setcookie("cookie",date('Y-m-d H: ...

  6. Winform容器标签 打印标签 对话框控件

    一.容器标签 布局: Anchor:锁定位置,指定与窗口容器的边缘位置,会随着窗口大小的改变而改变: Dock:填充窗口的位置.一般与容器标签同时使用. 1.Panel:对控件进行分组.可以独立布局, ...

  7. 在HTML5规范中div中读取预存的data-[key]值

    HTML 代码: <div id="div_test" data-test="this is test" ></div> jQuery ...

  8. 我的android学习经历14

    LinearLayout线性布局中gravity和Layout_gravity的解释 这两个都是说明对齐方式的.‘ gravity说明的是子控件的对齐方式,比如把gravity写在LinearLayo ...

  9. 【leetcode❤python】326. Power of Three

    #-*- coding: UTF-8 -*- class Solution(object):    def isPowerOfThree(self, n):        if n<=0:    ...

  10. UVA 11584 一 Partitioning by Palindromes

    Partitioning by Palindromes Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...