Apache Kafka:下一代分布式消息系统
【http://www.infoq.com/cn/articles/apache-kafka/】
分布式发布-订阅消息系统。
Kafka是一种快速、可扩展的、设计内在就是分布式的,分区的和可复制的提交日志服务。
Apache Kafka与传统消息系统相比,有以下不同:
它被设计为一个分布式系统,易于向外扩展;
它同时为发布和订阅提供高吞吐量;
它支持多订阅者,当失败时能自动平衡消费者;
它将消息持久化到磁盘,因此可用于批量消费,例如ETL,以及实时应用程序。
本文我将重点介绍Apache Kafka的架构、特性和特点,帮助我们理解Kafka为何比传统消息服务更好。
我将比较Kafak和传统消息服务RabbitMQ、Apache ActiveMQ的特点,讨论一些Kafka优于传统消息服务的场景。在最后一节,我们将探讨一个进行中的示例应用,展示Kafka作为消息服务器的用途。这个示例应用的完整源代码在GitHub。关于它的详细讨论在本文的最后一节。
【架构】
话题(Topic)是特定类型的消息流。消息是字节的有效负载(Payload),话题是消息的分类名或种子(Feed)名。
生产者(Producer)是能够发布消息到话题的任何对象。
已发布的消息保存在一组服务器中,它们被称为代理(Broker)或Kafka集群。
消费者可以订阅一个或多个话题,并从Broker拉数据,从而消费这些已发布的消息。
图1:Kafka生产者、消费者和代理环境
生产者可以选择自己喜欢的序列化方法对消息内容编码。为了提高效率,生产者可以在一个发布请求中发送一组消息。下面的代码演示了如何创建生产者并发送消息。
生产者示例代码:
producer = new Producer(…);
message = new Message(“test message str”.getBytes());
set = new MessageSet(message);
producer.send(“topic1”, set);
为了订阅话题,消费者首先为话题创建一个或多个消息流。发布到该话题的消息将被均衡地分发到这些流。每个消息流为不断产生的消息提供了迭代接口。然后消费者迭代流中的每一条消息,处理消息的有效负载。与传统迭代器不同,消息流迭代器永不停止。如果当前没有消息,迭代器将阻塞,直到有新的消息发布到该话题。
Kafka同时支持点到点分发模型(Point-to-point delivery model),即多个消费者共同消费队列中某个消息的单个副本,以及发布-订阅模型(Publish-subscribe model),即多个消费者接收自己的消息副本。下面的代码演示了消费者如何使用消息。
消费者示例代码:
streams[] = Consumer.createMessageStreams(“topic1”, 1)
for (message : streams[0]) {
bytes = message.payload();
// do something with the bytes
}
Kafka的整体架构如图2所示。因为Kafka内在就是分布式的,一个Kafka集群通常包括多个代理。为了均衡负载,将话题分成多个分区,每个代理存储一或多个分区。多个生产者和消费者能够同时生产和获取消息。
【Kafka存储】
Kafka的存储布局非常简单。话题的每个分区对应一个逻辑日志。物理上,一个日志为相同大小的一组分段文件。每次生产者发布消息到一个分区,代理就将消息追加到最后一个段文件中。当发布的消息数量达到设定值或者经过一定的时间后,段文件真正写入磁盘中。写入完成后,消息公开给消费者。
与传统的消息系统不同,Kafka系统中存储的消息没有明确的消息Id。
消息通过日志中的逻辑偏移量来公开。这样就避免了维护配套密集寻址,用于映射消息ID到实际消息地址的随机存取索引结构的开销。消息ID是增量的,但不连续。要计算下一消息的ID,可以在其逻辑偏移的基础上加上当前消息的长度。
消费者始终从特定分区顺序地获取消息,如果消费者知道特定消息的偏移量,也就说明消费者已经消费了之前的所有消息。消费者向代理发出异步拉请求,准备字节缓冲区用于消费。每个异步拉请求都包含要消费的消息偏移量。Kafka利用sendfile API高效地从代理的日志段文件中分发字节给消费者。
【Kafka代理】
与其它消息系统不同,Kafka代理是无状态的。这意味着消费者必须维护已消费的状态信息。这些信息由消费者自己维护,代理完全不管。这种设计非常微妙,它本身包含了创新。
从代理删除消息变得很棘手,因为代理并不知道消费者是否已经使用了该消息。Kafka创新性地解决了这个问题,它将一个简单的基于时间的SLA应用于保留策略。当消息在代理中超过一定时间后,将会被自动删除。
这种创新设计有很大的好处,消费者可以故意倒回到老的偏移量再次消费数据。这违反了队列的常见约定,但被证明是许多消费者的基本特征。
【ZooKeeper与Kafka】
考虑一下有多个服务器的分布式系统,每台服务器都负责保存数据,在数据上执行操作。这样的潜在例子包括分布式搜索引擎、分布式构建系统或者已知的系统如Apache Hadoop。所有这些分布式系统的一个常见问题是,你如何在任一时间点确定哪些服务器活着并且在工作中。最重要的是,当面对这些分布式计算的难题,例如网络失败、带宽限制、可变延迟连接、安全问题以及任何网络环境,甚至跨多个数据中心时可能发生的错误时,你如何可靠地做这些事。
这些正是Apache ZooKeeper所关注的问题,它是一个快速、高可用、容错、分布式的协调服务。你可以使用ZooKeeper构建可靠的、分布式的数据结构,用于群组成员、领导人选举、协同工作流和配置服务,以及广义的分布式数据结构如锁、队列、屏障(Barrier)和锁存器(Latch)。许多知名且成功的项目依赖于ZooKeeper,其中包括HBase、Hadoop 2.0、Solr Cloud、Neo4J、Apache Blur(Incubating)和Accumulo。
ZooKeeper是一个分布式的、分层级的文件系统,能促进客户端间的松耦合,并提供最终一致的,类似于传统文件系统中文件和目录的Znode视图。它提供了基本的操作,例如创建、删除和检查Znode是否存在。它提供了事件驱动模型,客户端能观察特定Znode的变化,例如现有Znode增加了一个新的子节点。ZooKeeper运行多个ZooKeeper服务器,称为Ensemble,以获得高可用性。每个服务器都持有分布式文件系统的内存复本,为客户端的读取请求提供服务。
上图4展示了典型的ZooKeeper ensemble,一台服务器作为Leader,其它作为Follower。当Ensemble启动时,先选出Leader,然后所有Follower复制Leader的状态。所有写请求都通过Leader路由,变更会广播给所有Follower。变更广播被称为原子广播。
Kafka中ZooKeeper的用途:正如ZooKeeper用于分布式系统的协调和促进,Kafka使用ZooKeeper也是基于相同的原因。ZooKeeper用于管理、协调Kafka代理。每个Kafka代理都通过ZooKeeper协调其它Kafka代理。当Kafka系统中新增了代理或者某个代理故障失效时,ZooKeeper服务将通知生产者和消费者。生产者和消费者据此开始与其它代理协调工作。Kafka整体系统架构如图5所示。
【Apache Kafka对比其它消息服务】
让我们了解一下使用Apache Kafka的两个项目,以对比其它消息服务。这两个项目分别是LinkedIn和我的项目:
LinkedIn的研究
LinkedIn团队做了个实验研究,对比Kafka与Apache ActiveMQ V5.4和RabbitMQ V2.4的性能。他们使用ActiveMQ默认的消息持久化库Kahadb。LinkedIn在两台Linux机器上运行他们的实验,每台机器的配置为8核2GHz、16GB内存,6个磁盘使用RAID10。两台机器通过1GB网络连接。一台机器作为代理,另一台作为生产者或者消费者。
【生产者测试】
LinkedIn团队在所有系统中配置代理,异步将消息刷入其持久化库。对每个系统,运行一个生产者,总共发布1000万条消息,每条消息200字节。Kafka生产者以1和50批量方式发送消息。ActiveMQ和RabbitMQ似乎没有简单的办法来批量发送消息,LinkedIn假定它的批量值为1。结果如下面的图6所示:
图6:LinkedIn的生产者性能实验结果
Kafka性能要好很多的主要原因包括:
Kafka不等待代理的确认,以代理能处理的最快速度发送消息。
Kafka有更高效的存储格式。平均而言,Kafka每条消息有9字节的开销,而ActiveMQ有144字节。其原因是JMS所需的沉重消息头,以及维护各种索引结构的开销。
LinkedIn注意到ActiveMQ一个最忙的线程大部分时间都在存取B-Tree以维护消息元数据和状态。
【消费者测试】
为了做消费者测试,LinkedIn使用一个消费者获取总共1000万条消息。LinkedIn让所有系统每次拉请求都预获取大约相同数量的数据,最多1000条消息或者200KB。对ActiveMQ和RabbitMQ,LinkedIn设置消费者确认模型为自动。结果如图7所示。
图7:LinkedIn的消费者性能实验结果
Kafka性能要好很多的主要原因包括:
Kafka有更高效的存储格式;在Kafka中,从代理传输到消费者的字节更少。
ActiveMQ和RabbitMQ两个容器中的代理必须维护每个消息的传输状态。LinkedIn团队注意到其中一个ActiveMQ线程在测试过程中,一直在将KahaDB页写入磁盘。与此相反,Kafka代理没有磁盘写入动作。
最后,Kafka通过使用sendfile API降低了传输开销。
目前,我正在工作的一个项目提供实时服务,从消息中快速并准确地提取场外交易市场(OTC)定价内容。这是一个非常重要的项目,处理近25种资产类别的财务信息,包括债券、贷款和ABS(资产担保证券)。项目的原始信息来源涵盖了欧洲、北美、加拿大和拉丁美洲的主要金融市场领域。下面是这个项目的一些统计,说明了解决方案中包括高效的分布式消息服务是多么重要:
每天处理的消息数量超过1,300,000;
每天解析的OTC价格数量超过12,000,000;
支持超过25种资产类别;
每天解析的独立票据超过70,000。
消息包含PDF、Word文档、Excel及其它格式。OTC定价也可能要从附件中提取。
由于传统消息服务器的性能限制,当处理大附件时,消息队列变得非常大,我们的项目面临严重的问题,JMSqueue一天需要启动2-3次。重启JMS队列可能丢失队列中的全部消息。项目需要一个框架,不论解析器(消费者)的行为如何,都能够保住消息。
Kafka的特性非常适用于我们项目的需求。
当前项目具备的特性:
使用Fetchmail获取远程邮件消息,然后由Procmail过滤并处理,例如单独分发基于附件的消息。
每条消息从单独的文件获取,该文件被处理(读取和删除)为一条消息插入到消息服务器中。
消息内容从消息服务队列中获取,用于解析和提取信息。
示例应用
这个示例应用是基于我在项目中使用的原始应用修改后的版本。我已经删除日志的使用和多线程特性,使示例应用的工件尽量简单。示例应用的目的是展示如何使用Kafka生产者和消费者的API。应用包括一个生产者示例(简单的生产者代码,演示Kafka生产者API用法并发布特定话题的消息),消费者示例(简单的消费者代码,用于演示Kafka消费者API的用法)以及消息内容生成API(在特定路径下生成消息内容到文件的API)。下图展示了各组件以及它们与系统中其它组件间的关系。
图8:示例应用组件架构
示例应用的结构与Kafka源代码中的例子程序相似。应用的源代码包含Java源程序文件夹‘src’和'config'文件夹,后者包括几个配置文件和一些Shell脚本,用于执行示例应用。要运行示例应用,请参照ReadMe.md文件或GitHub网站Wiki页面的说明。
程序构建可以使用Apache Maven,定制也很容易。如果有人想修改或定制示例应用的代码,有几个Kafka构建脚本已经过修改,可用于重新构建示例应用代码。关于如何定制示例应用的详细描述已经放在项目GitHub的Wiki页面。
现在,让我们看看示例应用的核心工件。
Kafka生产者代码示例
/**
* Instantiates a new Kafka producer.
*
* @param topic the topic
* @param directoryPath the directory path
*/
public KafkaMailProducer(String topic, String directoryPath) {
props.put("serializer.class", "kafka.serializer.StringEncoder");
props.put("metadata.broker.list", "localhost:9092");
producer = new kafka.javaapi.producer.Producer<Integer, String>(new ProducerConfig(props));
this.topic = topic;
this.directoryPath = directoryPath;
}
public void run() {
Path dir = Paths.get(directoryPath);
try {
new WatchDir(dir).start();
new ReadDir(dir).start();
} catch (IOException e) {
e.printStackTrace();
}
}
上面的代码片断展示了Kafka生产者API的基本用法,例如设置生产者的属性,包括发布哪个话题的消息,可以使用哪个序列化类以及代理的相关信息。这个类的基本功能是从邮件目录读取邮件消息文件,然后作为消息发布到Kafka代理。目录通过java.nio.WatchService类监视,一旦新的邮件消息Dump到该目录,就会被立即读取并作为消息发布到Kafka代理。
Kafka消费者代码示例
public KafkaMailConsumer(String topic) {
consumer =
Kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig());
this.topic = topic;
}
/**
* Creates the consumer config.
*
* @return the consumer config
*/
private static ConsumerConfig createConsumerConfig() {
Properties props = new Properties();
props.put("zookeeper.connect", KafkaMailProperties.zkConnect);
props.put("group.id", KafkaMailProperties.groupId);
props.put("zookeeper.session.timeout.ms", "400");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
return new ConsumerConfig(props);
}
public void run() {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(1));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0);
ConsumerIterator<byte[], byte[]> it = stream.iterator();
while (it.hasNext())
System.out.println(new String(it.next().message()));
}
上面的代码演示了基本的消费者API。正如我们前面提到的,消费者需要设置消费的消息流。在Run方法中,我们进行了设置,并在控制台打印收到的消息。在我的项目中,我们将其输入到解析系统以提取OTC定价。
在当前的质量保证系统中,我们使用Kafka作为消息服务器用于概念验证(Proof of Concept,POC)项目,它的整体性能优于JMS消息服务。其中一个我们感到非常兴奋的特性是消息的再消费(re-consumption),这让我们的解析系统可以按照业务需求重新解析某些消息。基于Kafka这些很好的效果,我们正计划使用它,而不是用Nagios系统,去做日志聚合与分析。
总结
Kafka是一种处理大量数据的新型系统。Kafka基于拉的消费模型让消费者以自己的速度处理消息。如果处理消息时出现了异常,消费者始终可以选择再消费该消息。
Apache Kafka:下一代分布式消息系统的更多相关文章
- [kfaka] Apache Kafka:下一代分布式消息系统
简介 Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交 ...
- 转 Apache Kafka:下一代分布式消息系统
简介 Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交 ...
- Apache Kafka:下一代分布式消息系统【转载】
简介 Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交 ...
- 【转载】Apache Kafka:下一代分布式消息系统
http://www.infoq.com/cn/articles/kafka-analysis-part-1 Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩 ...
- Kafka作为分布式消息系统的系统解析
Kafka概述 Apache Kafka由Scala和Java编写,基于生产者和消费者模型作为开源的分布式发布订阅消息系统.它提供了类似于JMS的特性,但设计上又有很大区别,它不是JMS规范的实现,如 ...
- [Apache Pulsar] 企业级分布式消息系统-Pulsar快速上手
Pulsar快速上手 前言 如果你还不了解Pulsar消息系统,可以先看上一篇文章 企业级分布式消息系统-Pulsar入门基础 Pulsar客户端支持多个语言,包括Java,Go,Pytho和C++, ...
- Kafka——分布式消息系统
Kafka——分布式消息系统 架构 Apache Kafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,整体架构比较新颖(push/pull),更适合异构集群. 设 ...
- 分布式消息系统Kafka初步
终于可以写kafka的文章了,Mina的相关文章我已经做了索引,在我的博客中置顶了,大家可以方便的找到.从这一篇开始分布式消息系统的入门. 在我们大量使用分布式数据库.分布式计算集群的时候,是否会遇到 ...
- KAFKA分布式消息系统[转]
KAFKA分布式消息系统 转自:http://blog.chinaunix.net/uid-20196318-id-2420884.html Kafka[1]是linkedin用于日志处理的分布式消 ...
随机推荐
- (转) Python Generators(生成器)——yield关键字
http://blog.csdn.net/scelong/article/details/6969276 生成器是这样一个函数,它记住上一次返回时在函数体中的位置.对生成器函数的第二次(或第 n 次) ...
- (转)python 优先队列
#!/usr/bin/python from Queue import Queue from Queue import PriorityQueue a1='a1' a2='a2' a3='a3' a4 ...
- phpcms还原被删除的栏目
1.在这个目录下/caches/bakup/default导出文件category.sql 2.登录网站的数据管理页面phpmyadmin 3.导入数据库选择category.sql 4.登陆网站后台 ...
- swun 1612 合并果子
//思路:这题思路似乎很简单,每次取出最小的两个堆合并, //但是由于数据太大,不能采取每次进行排序的方式,所以 //想到用优先队列,以数据小的优先级更高为标准,但是 //优先队列中的数据默认情况 ...
- Creole
Home Bisher besucht: AnzeigenAnhängeInfo The Creole 1.0 project has been succ ...
- Private Bytes,Working Set,Virtual Size的区别
http://aigo.iteye.com/blog/1930209 http://stackoverflow.com/questions/1984186/what-is-private-bytes- ...
- Android中的颜色值RGB对照表表
Android中颜色值是通过红(Red).绿(Green).蓝 (Blue)三原色,以及一个透明度(Alpha)值来表示的,颜色值总是以井号(#)开头,接下来就是Alpha-Red-Green-Blu ...
- Google软件测试
google测试相关的职位有三类:软件测试开发工程师.测试工程师以及测试工程经理. 软件测试开发工程师也是一个开发角色,只是工作重心在可测试性和通用测试框架上.他们参与设计评审,非常近距离地观察代码质 ...
- Eclipse配置信息
1.Eclipse VM arguments的保存位置: .metadata\.plugins\org.eclipse.debug.core\.launches (使用文件比较工具找出配置信息的保存位 ...
- Application_Error
//出现未捕捉的异常时,系统调用本方法,一般用于记录日志.错误页的重定向一般在web.config中设置. protected void Application_Error(object ...