题目大意:在nxm的方格中,从(1,1)走到(n,m)。每次只能在原地不动、向右走一格、向下走一格,概率分别为p1(i,j),p2(i,j),p3(i,j)。求行走次数的期望。

题目分析:状态转移方程很容易得到:

E(i,j)=p1(i,j)*E(i,j)+p2(i,j)*E(i,j+1)+p3(i,j)*E(i+1,j)。

代码如下:

# include<iostream>
# include<cstdio>
# include<cmath>
# include<cstring>
# include<algorithm>
using namespace std; const double eps=1e-8; int n,m;
double p1[1005][1005];
double p2[1005][1005];
double p3[1005][1005];
double dp[1005][1005]; int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;++i)
for(int j=0;j<m;++j)
scanf("%lf%lf%lf",&p1[i][j],&p2[i][j],&p3[i][j]);
dp[n-1][m-1]=0;
for(int i=n-2;i>=0;--i){
if(fabs(1-p1[i][m-1])<eps) continue;
dp[i][m-1]=(p3[i][m-1]*(dp[i+1][m-1]+2)+2*p1[i][m-1])/(1-p1[i][m-1]);
}
for(int i=m-2;i>=0;--i){
if(fabs(1-p1[n-1][i])<eps) continue;
dp[n-1][i]=(p2[n-1][i]*(dp[n-1][i+1]+2)+2*p1[n-1][i])/(1-p1[n-1][i]);
}
for(int i=n-2;i>=0;--i)
for(int j=m-2;j>=0;--j){
if(fabs(1-p1[i][j])<eps) continue;
dp[i][j]=(p2[i][j]*(dp[i][j+1]+2)+p3[i][j]*(dp[i+1][j]+2)+2*p1[i][j])/(1-p1[i][j]);
}
printf("%.3lf\n",dp[0][0]);
}
return 0;
}

  

HDU-3853 LOOPS(概率DP求期望)的更多相关文章

  1. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  2. HDU 3853 LOOPS 概率DP入门

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Sub ...

  3. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  4. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  5. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  6. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  7. LightOJ 1030 【概率DP求期望】

    借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值.从1开始,每次扔6个面的骰子,扔出几点就往前几步, ...

  8. HDU 5245 Joyful(概率题求期望)

    D - Joyful Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit S ...

  9. HDU 4405 Aeroplane chess (概率DP求期望)

    题意:有一个n个点的飞行棋,问从0点掷骰子(1~6)走到n点须要步数的期望 当中有m个跳跃a,b表示走到a点能够直接跳到b点. dp[ i ]表示从i点走到n点的期望,在正常情况下i点能够到走到i+1 ...

随机推荐

  1. dhtmlxScheduler日历日程控件包括天视图,周视图,月视图,年视图和日程表视图

    dhtmlxScheduler 是一个基于Web的类似于Outlook的日历日程控件. 它完全由javascript/js/css编写, 提供类似于MS Outlook Calendar, Apple ...

  2. ODI 12.1.3创建standalone代理

    首先要安装ODI. ODI安装 如果没有安装WLS,则可以选择独立安装,如下图.

  3. android:强制关闭其他应用

    强制关闭其他应用,可以使用ActivityManager,首先需要获取(ActivityManager)getSystemService(Context.ACTIVITY_SERVICE); 然后可以 ...

  4. 指定 ubuntu server ip

    指定 ubuntu server ip,一共就两步. ■编辑配置文件sudo vi /etc/network/interfaces ■重启网络配置sudo /etc/init.d/networking ...

  5. 如何解决火狐FF里Input标签刷新页面后 仍然保存之前输入的内容的方法。

    直接在input 标签里 增加 autocomplete="off".火狐默认为 on.

  6. Tips about Object-oriented programming

    1, Return subinterface For example, we have a parent interface: public interface A<T extends A< ...

  7. 【LeetCode OJ】Best Time to Buy and Sell Stock III

    Problem Link: http://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/ Linear Time Solut ...

  8. Jumping Cows_贪心

    Description Farmer John's cows would like to jump over the moon, just like the cows in their favorit ...

  9. matio使用

    http://na-wiki.csc.kth.se/mediawiki/index.php/MatIO (1)build根据教程 (2)sudo ldconfig (3)写main根据链接:修改几个类 ...

  10. python解析smart结构数据

    python编程解析如下smart结构数据,得到一行smart信息 run: smartctl -a /dev/sda out: smartctl 6.3 2014-07-26 r3976 [x86_ ...