Ombrophobic Bovines
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18205   Accepted: 3960

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze.
A set of P (1 <= P <= 1500) paths connects them. The paths are
wide, so that any number of cows can traverse a path in either
direction.

Some of the farm's fields have rain shelters under which the cows
can shield themselves. These shelters are of limited size, so a single
shelter might not be able to hold all the cows. Fields are small
compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field.
The first integer (range: 0..1000) is the number of cows in that field.
The second integer (range: 0..1000) is the number of cows the shelter
in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a
path. The first and second integers (both range 1..F) tell the fields
connected by the path. The third integer (range: 1..1,000,000,000) is
how long any cow takes to traverse it.

Output

*
Line 1: The minimum amount of time required for all cows to get under a
shelter, presuming they plan their routes optimally. If it not possible
for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter
in that field, four cows from field 1 can get under the shelter in field
2, and one cow can get to field 3 and join the cows from that field
under the shelter in field 3. Although there are other plans that will
get all the cows under a shelter, none will do it in fewer than 110 time
units.

【分析】这个题跟POJ2112很像,不过2112求的是最小的单条路,而这个题求的是最小的路径长度,所以要拆点,剩下的就是网络流了。一开始一直WA,后来把cost的初始化和Floyd改了一下就过了,感觉两种写法没什么区别啊,求大神指教。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int power(int a,int b,int c){int ans=;while(b){if(b%==){ans=(ans*a)%c;b--;}b/=;a=a*a%c;}return ans;}
struct man
{
int c,f;
}w[N][N];
int dis[N],n,m;
int t,cnt,maxn=,ans;
ll cost[N][N];
int c[N],f[N];
bool bfs()
{
queue<int>q;
memset(dis,,sizeof(dis));
q.push();
dis[]=;
while(!q.empty() && !dis[t]){
int v=q.front();q.pop();
for(int i=;i<=t;i++){
//if(i==t)printf("w[i][t].c=%d\n",w[i][t].c);
if(!dis[i]&&w[v][i].c>w[v][i].f){
q.push(i);
dis[i]=dis[v]+;
}
}
}
return dis[t]!=;
}
int dfs(int cur,int cp)
{
if(cur==t||cp==)return cp;
int tmp=cp,tt;
for(int i=;i<=t;i++){
if(dis[i]==dis[cur]+ &&w[cur][i].c>w[cur][i].f){
tt=dfs(i,min(w[cur][i].c-w[cur][i].f,tmp));
w[cur][i].f+=tt;
w[i][cur].f-=tt;
tmp-=tt;
}
}
return cp-tmp;
}
void dinic()
{
ans=;
while(bfs())ans+=dfs(,inf);
}
void Floyd()
{
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i!=j)cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
else cost[i][j]=;
}
}
}
}
void Build(ll x)
{
memset(w,,sizeof(w));
for(int i=;i<=n;i++)w[][i].c=c[i];
for(int i=n+;i<=*n;i++)w[i][t].c=f[i-n];
for(int i=;i<=n;i++)for(int j=n+;j<t;j++)if(cost[i][j-n]<=x)w[i][j].c=inf;
}
int main(){
cin>>n>>m;
memset(cost,inf,sizeof(cost));
ll l=,r=;
t=n*+;
for(int i=;i<=n;i++){cin>>c[i]>>f[i];maxn+=c[i];}
int a,b;ll val;
while(m--){
cin>>a>>b>>val;
r+=val;
cost[a][b]=cost[b][a]=min(cost[a][b],val);
}
Floyd();
bool flag=false;
while(l<r){
ll mid=(l+r)/;
Build(mid);
dinic();
if(ans>=maxn)r=mid,flag=true;
else l=mid+;
}
if(flag) cout<<r<<endl;
else puts("-1");
return ;
}

AC代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int power(int a,int b,int c){int ans=;while(b){if(b%==){ans=(ans*a)%c;b--;}b/=;a=a*a%c;}return ans;}
struct man
{
int c,f;
}w[N][N];
int dis[N],n,m;
int t,cnt,maxn=,ans;
ll cost[N][N];
int c[N],f[N];
bool bfs()
{
queue<int>q;
memset(dis,,sizeof(dis));
q.push();
dis[]=;
while(!q.empty() && !dis[t]){
int v=q.front();q.pop();
for(int i=;i<=t;i++){
//if(i==t)printf("w[i][t].c=%d\n",w[i][t].c);
if(!dis[i]&&w[v][i].c>w[v][i].f){
q.push(i);
dis[i]=dis[v]+;
}
}
}
return dis[t]!=;
}
int dfs(int cur,int cp)
{
if(cur==t||cp==)return cp;
int tmp=cp,tt;
for(int i=;i<=t;i++){
if(dis[i]==dis[cur]+ &&w[cur][i].c>w[cur][i].f){
tt=dfs(i,min(w[cur][i].c-w[cur][i].f,tmp));
w[cur][i].f+=tt;
w[i][cur].f-=tt;
tmp-=tt;
}
}
return cp-tmp;
}
void dinic()
{
ans=;
while(bfs())ans+=dfs(,inf);
}
void Floyd()
{
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
if(cost[i][k]!=inf){
for(int j=;j<=n;j++){
cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
}
}
}
}
}
void Build(ll x)
{
memset(w,,sizeof(w));
for(int i=;i<=n;i++)w[][i].c=c[i];
for(int i=n+;i<=*n;i++)w[i][t].c=f[i-n];
for(int i=;i<=n;i++)for(int j=n+;j<t;j++)if(cost[i][j-n]<=x)w[i][j].c=inf;
}
int main(){
cin>>n>>m;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j)cost[i][j]=;
else cost[i][j]=inf;
}
}
ll l=,r=;
t=n*+;
for(int i=;i<=n;i++){cin>>c[i]>>f[i];maxn+=c[i];}
int a,b;ll val;
while(m--){
cin>>a>>b>>val;
r+=val;
cost[a][b]=cost[b][a]=min(cost[a][b],val);
}
Floyd();
bool flag=false;
while(l<r){
ll mid=(l+r)/;
Build(mid);
dinic();
if(ans>=maxn)r=mid,flag=true;
else l=mid+;
}
if(flag) cout<<r<<endl;
else puts("-1");
return ;
}

上面的是WA代码,不知道为什么错了。

POJ2391 Ombrophobic Bovines(网络流)(拆点)的更多相关文章

  1. POJ2391 Ombrophobic Bovines 网络流拆点+二分+floyed

    题目链接: id=2391">poj2391 题意: 有n块草地,每块草地上有一定数量的奶牛和一个雨棚,并给出了每一个雨棚的容(牛)量. 有m条路径连接这些草地  ,这些路径是双向的, ...

  2. poj2391 Ombrophobic Bovines 拆点+二分法+最大流

    /** 题目:poj2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题意:有n块区域,第i块区域有ai头奶牛,以及一个可以容纳bi ...

  3. POJ2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19359   Accepted: 4 ...

  4. poj2391 Ombrophobic Bovines 题解

    http://poj.org/problem?id=2391 floyd+网络流+二分 题意:有一个有向图,里面每个点有ai头牛,快下雨了牛要躲进雨棚里,每个点有bi个雨棚,每个雨棚只能躲1头牛.牛可 ...

  5. POJ 2391 Ombrophobic Bovines 网络流 建模

    [题目大意]给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去.(1 <= N <= 200, 1 <= M & ...

  6. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  7. POJ2391:Ombrophobic Bovines(最大流+Floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 21660Accepted: 4658 题目 ...

  8. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  9. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

随机推荐

  1. LA 5061 LCA tarjan 算法

    题目大意: 给定所有点的权值都为0,给定一棵树以后,每次询问都要求给定两点 x , y 和一个权值w,要求x,y路径上所有点权值加上w,最后求出每一个节点的值 这里因为查询和点都特别多,所以希望能最后 ...

  2. DotNetBar v12.3.0.3 Fully Cracked

    PS: 博客园的程序出现问题,导致我的博客不能访问(转到登录页),而我自己由于 Cookies 问题,一直可以访问,所以一直未发现该问题. 感谢冰河之刃告知,thx! 更新信息: http://www ...

  3. [windows驱动]基本概念

    https://msdn.microsoft.com/zh-cn/library/windows/hardware/ff554721 1.设备节点和设备堆栈 在windows中,设备通过即插即用设备树 ...

  4. Android中 服务里的方法抽取成接口

    1 写个类继承Service 重写 onBind方法 返回一个IBinder 对象(传递到连接成功时用) 2 服务中 写一个内部类 继承IBinder 并且实现一个接口(用于抽取方法)继承IBinde ...

  5. SharePoint 2016 的新特性概览(二)(What's New for IT Professionals in SharePoint Server 2016)

    博客地址:http://blog.csdn.net/FoxDave SharePoint 2016 的新特性 三. 监测和数据(Insights and Data) 实时数据监测,包括对使用情况.存储 ...

  6. 统计一段文字中出现频率最高的10个单词(c语言)

    注:这次使用C语言做的这个程序.个别不懂的地方和算法部分是请教的其他同学,交流并吸收,所以收获颇多! 在程序中每一个地方我都做了注释,方便同学之间交流.也让老师容易看.程序也有很多不足的地方,但限于本 ...

  7. 2016 - 1 - 19NSOpertation的依赖关系和监听

    一:NSOperation的依赖: 1.概念:队列中的A操作需要等其他B操作或者某些操作执行完毕后才执行,就叫做A依赖与B或者A依赖于其他某些操作. 2.注意点:不能循环依赖,否则卡死.如: [op2 ...

  8. python3 nonlocal vs global

    考虑这样一个python程序: x = 12 def func(): x = 1 func() print(x) 输出为:x = 12 因为函数内部定义的x被认为只属于局部作用域,为了表明我么引用的是 ...

  9. Android Toast效果

    Android Toast效果是一种提醒方式,在程序中使用一些短小的信息通知用户,过一会儿会自动消失,实现如下: FirstActivity.java package org.elvalad.acti ...

  10. R——启程——豆瓣影评分析

    专业统计的我,自然免不了学R的,今天仔细看了这篇教程(感谢学姐的推荐@喜欢算法的女青年),就学着用R仿照着做一个,作为R语言学习的起点吧. 影评数据是用python爬的,之后会在python爬虫系列补 ...