VGG-19 和 VGG-16 的 prototxt文件
VGG-19 和 VGG-16 的 prototxt文件
VGG-19 和 VGG-16 的 prototxt文件
VGG-16:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
caffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
VGG-19:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
caffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
VGG_16.prototxt 文件:
name: "VGG_ILSVRC_19_layer" layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
} image_data_param {
batch_size: 12
source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"
root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"
}
} layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
}
image_data_param {
batch_size: 10
source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"
root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"
}
} layer {
bottom:"data"
top:"conv1_1"
name:"conv1_1"
type:"Convolution"
convolution_param {
num_output:64
pad:1
kernel_size:3
}
}
layer {
bottom:"conv1_1"
top:"conv1_1"
name:"relu1_1"
type:"ReLU"
}
layer {
bottom:"conv1_1"
top:"conv1_2"
name:"conv1_2"
type:"Convolution"
convolution_param {
num_output:64
pad:1
kernel_size:3
}
}
layer {
bottom:"conv1_2"
top:"conv1_2"
name:"relu1_2"
type:"ReLU"
}
layer {
bottom:"conv1_2"
top:"pool1"
name:"pool1"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size:2
stride:2
}
}
layer {
bottom:"pool1"
top:"conv2_1"
name:"conv2_1"
type:"Convolution"
convolution_param {
num_output:128
pad:1
kernel_size:3
}
}
layer {
bottom:"conv2_1"
top:"conv2_1"
name:"relu2_1"
type:"ReLU"
}
layer {
bottom:"conv2_1"
top:"conv2_2"
name:"conv2_2"
type:"Convolution"
convolution_param {
num_output:128
pad:1
kernel_size:3
}
}
layer {
bottom:"conv2_2"
top:"conv2_2"
name:"relu2_2"
type:"ReLU"
}
layer {
bottom:"conv2_2"
top:"pool2"
name:"pool2"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size:2
stride:2
}
}
layer {
bottom:"pool2"
top:"conv3_1"
name: "conv3_1"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_1"
top:"conv3_1"
name:"relu3_1"
type:"ReLU"
}
layer {
bottom:"conv3_1"
top:"conv3_2"
name:"conv3_2"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_2"
top:"conv3_2"
name:"relu3_2"
type:"ReLU"
}
layer {
bottom:"conv3_2"
top:"conv3_3"
name:"conv3_3"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_3"
top:"conv3_3"
name:"relu3_3"
type:"ReLU"
}
layer {
bottom:"conv3_3"
top:"conv3_4"
name:"conv3_4"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_4"
top:"conv3_4"
name:"relu3_4"
type:"ReLU"
}
layer {
bottom:"conv3_4"
top:"pool3"
name:"pool3"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool3"
top:"conv4_1"
name:"conv4_1"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_1"
top:"conv4_1"
name:"relu4_1"
type:"ReLU"
}
layer {
bottom:"conv4_1"
top:"conv4_2"
name:"conv4_2"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_2"
top:"conv4_2"
name:"relu4_2"
type:"ReLU"
}
layer {
bottom:"conv4_2"
top:"conv4_3"
name:"conv4_3"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_3"
top:"conv4_3"
name:"relu4_3"
type:"ReLU"
}
layer {
bottom:"conv4_3"
top:"conv4_4"
name:"conv4_4"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_4"
top:"conv4_4"
name:"relu4_4"
type:"ReLU"
}
layer {
bottom:"conv4_4"
top:"pool4"
name:"pool4"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool4"
top:"conv5_1"
name:"conv5_1"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_1"
top:"conv5_1"
name:"relu5_1"
type:"ReLU"
}
layer {
bottom:"conv5_1"
top:"conv5_2"
name:"conv5_2"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_2"
top:"conv5_2"
name:"relu5_2"
type:"ReLU"
}
layer {
bottom:"conv5_2"
top:"conv5_3"
name:"conv5_3"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_3"
top:"conv5_3"
name:"relu5_3"
type:"ReLU"
}
layer {
bottom:"conv5_3"
top:"conv5_4"
name:"conv5_4"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_4"
top:"conv5_4"
name:"relu5_4"
type:"ReLU"
}
layer {
bottom:"conv5_4"
top:"pool5"
name:"pool5"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool5"
top:"fc6_"
name:"fc6_"
type:"InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom:"fc6_"
top:"fc6_"
name:"relu6"
type:"ReLU"
}
layer {
bottom:"fc6_"
top:"fc6_"
name:"drop6"
type:"Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom:"fc6_"
top:"fc7"
name:"fc7"
type:"InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom:"fc7"
top:"fc7"
name:"relu7"
type:"ReLU"
}
layer {
bottom:"fc7"
top:"fc7"
name:"drop7"
type:"Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom:"fc7"
top:"fc8_"
name:"fc8_"
type:"InnerProduct"
inner_product_param {
num_output: 43
}
} layer {
name: "sigmoid"
type: "Sigmoid"
bottom: "fc8_"
top: "fc8_"
} layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8_"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
} layer {
name: "loss"
type: "EuclideanLoss"
bottom: "fc8_"
bottom: "label"
top: "loss"
}
name: "VGG_ILSVRC_16_layer"
layers {
name: "data"
type: IMAGE_DATA
top: "data"
top: "label"
include {
phase: TRAIN
} image_data_param {
batch_size: 80
source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Labeled_Train_0.5_.txt"
root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/train_image_sun_256_256/"
new_height: 224
new_width: 224
}
} layers {
name: "data"
type: IMAGE_DATA
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
}
image_data_param {
batch_size: 10
source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Test_0.5_.txt"
root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/test_image_sun_227_227/"
new_height:224
new_width:224
}
} layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8_"
name: "fc8_"
type: INNER_PRODUCT
inner_product_param {
num_output: 88
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc8_"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layers{
name: "loss"
type: SOFTMAX_LOSS
bottom: "fc8_"
bottom: "label"
top: "loss"
}
VGG-19 和 VGG-16 的 prototxt文件的更多相关文章
- Web 在线文件管理器学习笔记与总结(15)剪切文件夹 (16)删除文件夹
(15)剪切文件夹 ① 通过rename($oldname,$newname) 函数实现剪切文件夹的操作 ② 需要检测目标文件夹是否存在,如果存在还要检测目标目录中是否存在同名文件夹,如果不存在则剪切 ...
- HTTP 错误 500.19 – Internal Server Error web.config 文件的 system.webServer/httpErrors 节中不允许绝对物理路径“C:\inetpub\custerr”[转]
给ASP或者ASP.NET等需要配置IIS服务器的过程中,很可能会遇到以下两种错误.尤其是用Win7系统的,配置IIS7.0版本比用XP系统配置IIS5.1版本而言要复杂复杂一些.当同时需要配置ASP ...
- caffe生成deploy.prototxt文件
参考: http://blog.csdn.net/cham_3/article/details/52682479 以caffe工程自带的mnist数据集,lenet网络为例: 将lenet_train ...
- 根据 train_test.prototxt文件生成 deploy.prototxt文件
本文参考博文 (1)介绍 *_train_test.prototxt文件与 *_deploy.prototxt文件的不同:http://blog.csdn.net/sunshine_in_moon/a ...
- train_val.prototxt文件和deploy.prototxt文件开头的区别
1.开头不同 对train_val.prototxt文件来说,开头部分定义训练和测试的网络及参数 对deploy.prototxt文件来说,开头部分定义实际运用场景的配置文件,其参数不定义数据来源,仅 ...
- 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别
本文以CaffeNet为例: 1. train_val.prototxt 首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...
- C/C++ 读取16进制文件
1.为什么有这种需求 因为有些情况需要避免出现乱码.不管什么编码都是二进制的,这样表示为16进制就可以啦. 2.如何读取16进制文件 最近编程用这一问题,网上查了一下,感觉还是自己写吧. 16进制数据 ...
- 解析prototxt文件的python库 prototxt-parser(使用parsy自定义文件格式解析)
解析prototxt文件的python库 prototxt-parser https://github.com/yogin16/prototxt_parser https://test.pypi.or ...
- VGG 19
关于VGG19的一些参考资料 http://www.cnblogs.com/vipyoumay/archive/2017/11/23/7884472.html https://cloud.tencen ...
随机推荐
- stm32定义GPIO口方向和操作的代码
#include "stm32f10x.h" #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+(( ...
- UIlabel设置不同的颜色
NSString *string = @"注册过程中出现问题,致电400-650-5167联系会养车工作人员"; NSRange range = [string rangeO ...
- 关于resolve非泛型方法不能与类型实参一起使用
今天mvc新建三层时,写到bll层中一直报下面的错误,检查了几遍赶脚并没有什么错.最后发现缺少一些引用. 如下面的图,少添加了下面的两个引用.Unity是微软模式与实践团队开发的一个轻量级.可扩展的依 ...
- JS 原型继承的几种方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- hdu 2090
PS:输入麻烦...我还以为是输入一个就输出一个...后来看了大神的才知道....暴力破解了... 代码; #include "stdio.h" int main(){ ,a,b; ...
- BZOJ 3439 Kpm的MC密码
倒着建trie,然后主席树来求子树第k大. #include<iostream> #include<cstdio> #include<cstring> #inclu ...
- java.lang.IllegalStateException: Can not perform this action after onSaveInstanceState解决?
做项目到最后整合的时候测试的时候发现 切换tab更换fragment的时候抛出了这个异常,根据异常信息Can not perform this action after onSaveInstance ...
- Linux环境给文件重命名
Linux环境给文件重命名时,如果重命名后的文件名称与当前路径下已存在的文件名称相同,则重命名的文件会覆盖相同名称的文件内容: 例如:新建文件testfile1,内容为mytest: 新建文件test ...
- HDU 4160
http://acm.hdu.edu.cn/showproblem.php?pid=4160 大娃娃可以套在小娃娃外面(各边严格小),问最后最少得到几个娃娃 题目中的娃娃可以看做点,嵌套关系可以看做有 ...
- linxu fcntl 函数用法 【转】
功能描述:根据文件描述词来操作文件的特性. 文件控制函数 fcntl -- file control 头文件: #include <fcntl.h>; i ...