VGG-19 和 VGG-16 的 prototxt文件
 

VGG-19 和 VGG-16 的 prototxt文件

VGG-16:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
caffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel

VGG-19:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
caffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel

VGG_16.prototxt 文件:

name: "VGG_ILSVRC_19_layer"

layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
} image_data_param {
batch_size: 12
source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"
root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"
}
} layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
}
image_data_param {
batch_size: 10
source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"
root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"
}
} layer {
bottom:"data"
top:"conv1_1"
name:"conv1_1"
type:"Convolution"
convolution_param {
num_output:64
pad:1
kernel_size:3
}
}
layer {
bottom:"conv1_1"
top:"conv1_1"
name:"relu1_1"
type:"ReLU"
}
layer {
bottom:"conv1_1"
top:"conv1_2"
name:"conv1_2"
type:"Convolution"
convolution_param {
num_output:64
pad:1
kernel_size:3
}
}
layer {
bottom:"conv1_2"
top:"conv1_2"
name:"relu1_2"
type:"ReLU"
}
layer {
bottom:"conv1_2"
top:"pool1"
name:"pool1"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size:2
stride:2
}
}
layer {
bottom:"pool1"
top:"conv2_1"
name:"conv2_1"
type:"Convolution"
convolution_param {
num_output:128
pad:1
kernel_size:3
}
}
layer {
bottom:"conv2_1"
top:"conv2_1"
name:"relu2_1"
type:"ReLU"
}
layer {
bottom:"conv2_1"
top:"conv2_2"
name:"conv2_2"
type:"Convolution"
convolution_param {
num_output:128
pad:1
kernel_size:3
}
}
layer {
bottom:"conv2_2"
top:"conv2_2"
name:"relu2_2"
type:"ReLU"
}
layer {
bottom:"conv2_2"
top:"pool2"
name:"pool2"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size:2
stride:2
}
}
layer {
bottom:"pool2"
top:"conv3_1"
name: "conv3_1"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_1"
top:"conv3_1"
name:"relu3_1"
type:"ReLU"
}
layer {
bottom:"conv3_1"
top:"conv3_2"
name:"conv3_2"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_2"
top:"conv3_2"
name:"relu3_2"
type:"ReLU"
}
layer {
bottom:"conv3_2"
top:"conv3_3"
name:"conv3_3"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_3"
top:"conv3_3"
name:"relu3_3"
type:"ReLU"
}
layer {
bottom:"conv3_3"
top:"conv3_4"
name:"conv3_4"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_4"
top:"conv3_4"
name:"relu3_4"
type:"ReLU"
}
layer {
bottom:"conv3_4"
top:"pool3"
name:"pool3"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool3"
top:"conv4_1"
name:"conv4_1"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_1"
top:"conv4_1"
name:"relu4_1"
type:"ReLU"
}
layer {
bottom:"conv4_1"
top:"conv4_2"
name:"conv4_2"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_2"
top:"conv4_2"
name:"relu4_2"
type:"ReLU"
}
layer {
bottom:"conv4_2"
top:"conv4_3"
name:"conv4_3"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_3"
top:"conv4_3"
name:"relu4_3"
type:"ReLU"
}
layer {
bottom:"conv4_3"
top:"conv4_4"
name:"conv4_4"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_4"
top:"conv4_4"
name:"relu4_4"
type:"ReLU"
}
layer {
bottom:"conv4_4"
top:"pool4"
name:"pool4"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool4"
top:"conv5_1"
name:"conv5_1"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_1"
top:"conv5_1"
name:"relu5_1"
type:"ReLU"
}
layer {
bottom:"conv5_1"
top:"conv5_2"
name:"conv5_2"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_2"
top:"conv5_2"
name:"relu5_2"
type:"ReLU"
}
layer {
bottom:"conv5_2"
top:"conv5_3"
name:"conv5_3"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_3"
top:"conv5_3"
name:"relu5_3"
type:"ReLU"
}
layer {
bottom:"conv5_3"
top:"conv5_4"
name:"conv5_4"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_4"
top:"conv5_4"
name:"relu5_4"
type:"ReLU"
}
layer {
bottom:"conv5_4"
top:"pool5"
name:"pool5"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool5"
top:"fc6_"
name:"fc6_"
type:"InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom:"fc6_"
top:"fc6_"
name:"relu6"
type:"ReLU"
}
layer {
bottom:"fc6_"
top:"fc6_"
name:"drop6"
type:"Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom:"fc6_"
top:"fc7"
name:"fc7"
type:"InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom:"fc7"
top:"fc7"
name:"relu7"
type:"ReLU"
}
layer {
bottom:"fc7"
top:"fc7"
name:"drop7"
type:"Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom:"fc7"
top:"fc8_"
name:"fc8_"
type:"InnerProduct"
inner_product_param {
num_output: 43
}
} layer {
name: "sigmoid"
type: "Sigmoid"
bottom: "fc8_"
top: "fc8_"
} layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8_"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
} layer {
name: "loss"
type: "EuclideanLoss"
bottom: "fc8_"
bottom: "label"
top: "loss"
}

  

name: "VGG_ILSVRC_16_layer"
layers {
name: "data"
type: IMAGE_DATA
top: "data"
top: "label"
include {
phase: TRAIN
} image_data_param {
batch_size: 80
source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Labeled_Train_0.5_.txt"
root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/train_image_sun_256_256/"
new_height: 224
new_width: 224
}
} layers {
name: "data"
type: IMAGE_DATA
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
}
image_data_param {
batch_size: 10
source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Test_0.5_.txt"
root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/test_image_sun_227_227/"
new_height:224
new_width:224
}
} layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8_"
name: "fc8_"
type: INNER_PRODUCT
inner_product_param {
num_output: 88
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc8_"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layers{
name: "loss"
type: SOFTMAX_LOSS
bottom: "fc8_"
bottom: "label"
top: "loss"
}

  

VGG-19 和 VGG-16 的 prototxt文件的更多相关文章

  1. Web 在线文件管理器学习笔记与总结(15)剪切文件夹 (16)删除文件夹

    (15)剪切文件夹 ① 通过rename($oldname,$newname) 函数实现剪切文件夹的操作 ② 需要检测目标文件夹是否存在,如果存在还要检测目标目录中是否存在同名文件夹,如果不存在则剪切 ...

  2. HTTP 错误 500.19 – Internal Server Error web.config 文件的 system.webServer/httpErrors 节中不允许绝对物理路径“C:\inetpub\custerr”[转]

    给ASP或者ASP.NET等需要配置IIS服务器的过程中,很可能会遇到以下两种错误.尤其是用Win7系统的,配置IIS7.0版本比用XP系统配置IIS5.1版本而言要复杂复杂一些.当同时需要配置ASP ...

  3. caffe生成deploy.prototxt文件

    参考: http://blog.csdn.net/cham_3/article/details/52682479 以caffe工程自带的mnist数据集,lenet网络为例: 将lenet_train ...

  4. 根据 train_test.prototxt文件生成 deploy.prototxt文件

    本文参考博文 (1)介绍 *_train_test.prototxt文件与 *_deploy.prototxt文件的不同:http://blog.csdn.net/sunshine_in_moon/a ...

  5. train_val.prototxt文件和deploy.prototxt文件开头的区别

    1.开头不同 对train_val.prototxt文件来说,开头部分定义训练和测试的网络及参数 对deploy.prototxt文件来说,开头部分定义实际运用场景的配置文件,其参数不定义数据来源,仅 ...

  6. 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别

    本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...

  7. C/C++ 读取16进制文件

    1.为什么有这种需求 因为有些情况需要避免出现乱码.不管什么编码都是二进制的,这样表示为16进制就可以啦. 2.如何读取16进制文件 最近编程用这一问题,网上查了一下,感觉还是自己写吧. 16进制数据 ...

  8. 解析prototxt文件的python库 prototxt-parser(使用parsy自定义文件格式解析)

    解析prototxt文件的python库 prototxt-parser https://github.com/yogin16/prototxt_parser https://test.pypi.or ...

  9. VGG 19

    关于VGG19的一些参考资料 http://www.cnblogs.com/vipyoumay/archive/2017/11/23/7884472.html https://cloud.tencen ...

随机推荐

  1. 解决问题:centos虚拟机安装好nginx,本机无法访问

    阵子在虚拟机上装好了centos5.3,并配好了nginx+php+mysql,但是本机就是无法访问.一直就没去折腾了.具体情况如下1.本机能ping通虚拟机2.虚拟机也能ping通本机3.虚拟机能访 ...

  2. UITableViewCell 自适应高度 ios8特性

    这篇文章介绍了在一个动态数据的 table view 中,cell 根据 text view 内容的输入实时改变 cell 和 table view 的高度.自动计算 cell 高度的功能使用 iOS ...

  3. oracle字符集的查看和修改

    Oracle修改字符集2.3oracle数据库的字符集更改 A.oracle server 端 字符集查询 select userenv(‘language’) from dual 其中NLS_CHA ...

  4. Git ~ 管理修改 ~ Gitasd

    现在假设你一经常我了暂存区的概念 , 下面我们将要讨论的就是 , 为什么 Git 比其他的版本控制系统设计的优秀 , 因为 Git 跟踪管理的是修改而非文件 什么是修改  ? 修改就是 你在某个地方 ...

  5. Kylin上chromium不能用flash的解决命令

    sudo apt-get update sudo apt-get install pepperflashplugin-nonfree sudo update-pepperflashplugin-non ...

  6. 步步入佳境---UI入门(3) --单视图控制器

    视图控制器特点//1,抽象  视觉上没有效果//2,负责控制视图的显示方式//3,负责通知视图的显示内容//4,ios平台赋予的,收到内存警告和检测设备旋转@interface CHViewContr ...

  7. “PEDIY CrackMe 2007” 下载地址

    工欲善其事,必先利其器.本专辑收集了看雪论坛『CrackMe & ReverseMe』版块2004年4月-2006年12月31期间所有的CrackMe和ReverseMe,共350余个. 下载 ...

  8. List<T>转换为DataTable

    List<info> infos = Dal.GetInfos(); DataTable dt = new DataTable(); dt.Columns.Add("cName& ...

  9. 四则运算<3>

    //李妍 2015.3.12 //四则运算新 #include<iostream> #include<fstream> #include<iomanip> #inc ...

  10. FTP服务器移动文件目录

    已经可以移动文件了,原因是路径问题.还是用的Rename方法.原因是RenameTo=“”;这里的路径之前没包含文件名,而且相对路径和绝对路径都没弄对,所以之前一直不相信别人说的Rename可以移动文 ...