题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667

费马小定理:

假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。

即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

注意这里使用快速幂的时候要根据费马小定理对p-1取模。还有注意a%p=0的情况。

递推式:f(n)=f(n-1)*c+f(n-2)+1 非齐次。

构造矩阵:

|c  |
| |
| |

初始的矩阵:

||
||
||
 #include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath> using namespace std; typedef long long ll;
const ll maxn = ;
ll n, a, b, c, p; typedef struct Matrix {
ll m[maxn][maxn];
ll r;
ll c;
Matrix(){
r = c = ;
memset(m, , sizeof(m));
}
} Matrix; Matrix mul(Matrix m1, Matrix m2, ll mod) {
Matrix ans = Matrix();
ans.r = m1.r;
ans.c = m2.c;
for(ll i = ; i <= m1.r; i++) {
for(ll j = ; j <= m2.r; j++) {
for(ll k = ; k <= m2.c; k++) {
if(m2.m[j][k] == ) continue;
ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
}
}
}
return ans;
} Matrix quickmul(Matrix m, ll n, ll mod) {
Matrix ans = Matrix();
for(ll i = ; i <= m.r; i++) {
ans.m[i][i] = ;
}
ans.r = m.r;
ans.c = m.c;
while(n) {
if(n & ) {
ans = mul(m, ans, mod);
}
m = mul(m, m, mod);
n >>= ;
}
return ans;
} ll qm(ll x, ll n, ll mod) {
ll ans = , t = x;
while(n) {
if(n & ) ans = (ans * t) % mod;
t = (t * t) % mod;
n >>= ;
}
return ans;
}
int main() {
// freopen("in", "r", stdin);
int T;
scanf("%d", &T);
while(T--) {
cin >> n >> a >> b >> c >> p;
Matrix r;
r.r = , r.c = ;
r.m[][] = ;
r.m[][] = ;
r.m[][] = ;
if(n == ) {
printf("1\n");
continue;
}
if(n == ) {
printf("%I64d\n", qm(a, b, p));
continue;
}
if(a % p == ) {
printf("0\n");
continue;
}
Matrix s;
s.r = s.c = ;
s.m[][] = c, s.m[][] = , s.m[][] = ;
s.m[][] = , s.m[][] = , s.m[][] = ;
s.m[][] = , s.m[][] = , s.m[][] = ;
s = quickmul(s, n-, p-);
ll ans = ;
for(int i = ; i <= r.r; i++) {
ans = (ans + (s.m[][i] * r.m[i][]) % (p - )) % (p - );
}
printf("%I64d\n", qm(a, (ans*b)%(p-), p));
}
return ;
}

[HDOJ5667]Sequence(矩阵快速幂,费马小定理)的更多相关文章

  1. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 5667 Sequence 矩阵快速幂+费马小定理

    题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...

  3. HDU 5667 Sequence【矩阵快速幂+费马小定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...

  4. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  5. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  6. hdu4549矩阵快速幂+费马小定理

    转移矩阵很容易求就是|0  1|,第一项是|0| |1  1|             |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...

  7. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  8. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  9. HDU——5667Sequence(矩阵快速幂+费马小定理应用)

    Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S ...

  10. 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)

    https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...

随机推荐

  1. jquery的ajax向后台提交时,乱码的解决方案

    1. 可以给每个参数加上encodeURIComponent(),然后在后台获得参数后用URLDecoder.decode(string, 'utf-8')解码. 2. 后台不用解码. $.ajax( ...

  2. .NET设计模式(16):模版方法(Template Method)(转)

    摘要:Template Method模式是比较简单的设计模式之一,但它却是代码复用的一项基本的技术,在类库中尤其重要. 主要内容 1.概述 2.Template Method解说 3..NET中的Te ...

  3. topcoder 643 DIV2

    太弱了,太弱了! A:基本的判断吧,然后就是边界问题,写了好久,结果发现时房间第二个交的.. B:真心跪了,还好想出来了,思路想的太慢太慢,结果交上去,落后太多,不过HACK时很多人挂了, 这也是DI ...

  4. 全7 天玩转 ASP.NET MVC — 第 2 天

    0. 前言 我相信在开始第 2 天的学习时,你已经顺利地完成了第 1 天的课程. 我们回顾一下第 1 天的主要关注点: 为什么选择 ASP.NET MVC ? ASP.NET Webforms 和 A ...

  5. D&F学数据结构系列——二叉排序树

    二叉排序树(Binary Sort Tree) 定义:对于树中的每个结点X,它的左子树中所有关键字值小于X的关键字值,而它的右子树中所有关键字值大于X的关键字值. 二叉查找树声明: #ifndef _ ...

  6. 在Vista或Windows 7系统上安装Sharepoint 2007

    在Vista或Windows 7系统上安装Sharepoint 2007 2010-03-05 18:53:19|  分类: 技术文章|字号 订阅     SharePoint 2007 不能直接安装 ...

  7. HtmlAgilityPack 之 HtmlNode类

    HtmlAgilityPack中的HtmlNode类与XmlNode类差不多,提供的功能也大同小异.下面来看看该类提供功能. 一.静态属性 public static Dictionary<st ...

  8. odata

    http://www.odata.org/ Open Data Protocol (开放数据协议,OData)是用来查询和更新数据的一种Web协议,其提供了把存在于应用程序中的数据暴露出来的方式.OD ...

  9. 博弈的SG函数理解及模板

    首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2,3,5}=0.mex{}=0. 对 ...

  10. ibatis2.3中#和$符号的区别(转)

    在Ibatis中我们使用SqlMap进行Sql查询时需要引用参数,在参数引用中遇到的符号#和$之间的区分为,#可以进行与编译,进行类型匹配,而$不进行数据类型匹配,例如: select * from ...