希尔排序的关键在于步长的选取。

希尔排序的复杂度比较复杂,主要跟步长的选择有关,大概是 O(n logn^2),一般认为就是介于 O(n^2) 和 O(n logn) 之间。最好步长比较复杂,一般第一次取序列的一半,以后每次减半,直到步长为1。

  对于希尔排序为什么明显优于直接插入排序:“希尔排序通过将比较的全部元素分为几个区域来提升插入排序的性能。这样可以让一个元素可以一次性地朝最终位置前进一大步。然后算法再取越来越小的步长进行排序,算法的最后一步就是普通的插入排序,但是到了这步,需排序的数据几乎是已排好的了(此时插入排序较快)。”“可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就不会以如此短的时间完成排序了。”

  复杂度:

  最差时间复杂度:根据步长串行的不同而不同。 已知最好的 O(n logn^2)

  最优时间复杂度:O(n)

  平均时间复杂度:根据步长串行的不同而不同。

  最差空间复杂度:O(n)

  稳定性:不稳定

http://www.douban.com/note/318488333/

以后的策略:主要以实现算法和书写伪代码为主。

每天一个小算法(Shell sort5)的更多相关文章

  1. 每天一个小算法(Shell Sort3)

    希尔算法自己编了一个,循环很多,很不美观,不过运行正确: c语言实现: #include <stdio.h> #include <stdlib.h> #define LEN 2 ...

  2. 每天一个小算法(Shell Sort1)

    希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进.希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录 ...

  3. 每天一个小算法(Shell Sort2)

    希尔排序: 伪代码: input: an array a of length n with array elements numbered 0 to n − 1 inc ← round(n/2) wh ...

  4. 每天一个小算法(4)----在O(1)时间删除指定结点

    O(1)时间内删除结点的思路只能是复制该结点下一个结点的数据,然后删除该结点的下一个结点,来等效删除此结点. 需要注意的地方是删除头结点和尾结点的处理. #include <stdio.h> ...

  5. 每天一个小算法(insertion sort3)

    今天多看看插入排序的理论部分. 先贴几个概念吧: 1.伪代码(英语:pseudocode),又称为虚拟代码,是高层次描述算法的一种方法.它不是一种现实存在的编程语言(已经出现了类似伪代码的语言,参见N ...

  6. python3 自己写的一个小算法(比对中文文本相似度)

    函数使用说明: 函数的三个参数分别是“匹配语句”,“匹配语料”,“相关度”: 匹配语句,和匹配预料中的语句匹配的语句,必须为字符串: 匹配语料,被匹配语句来匹配的语句列表,必须为列表: 相关度,函数只 ...

  7. 感冒了~ vs中py和vb实现一个小算法

    1+1*2+1*2*3+--+1*2*3*n 下面是窗体,就一个按钮和编辑框. 中途还遇到了编码问题,但是感冒太难受,加上明天还要上课.就睡了~ 晚安世界.

  8. Python数学运算的一个小算法(求一元二次方程的实根)

    请定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程:ax² + bx + c = 0的两个解. #!/usr/bin/env python # -*- coding: ...

  9. 每天一个小算法(Heapsort)

    #include "stdio.h" #include "stdlib.h" #define Num 10 Heap(int arr[],int i,int n ...

随机推荐

  1. JavaScript在IE6,IE7下报错'expected identifier, string or number'

    问题: 代码在Forefox和IE8下工作正常,但是在IE6下报错: expected identifier, string or number 假如变量options有多个选项,那么我们可以用逗号分 ...

  2. .NET设计模式(19):观察者模式(Observer Pattern)(转)

    概述 在软件构建过程中,我们需要为某些对象建立一种“通知依赖关系” ——一个对象(目标对象)的状态发生改变,所有的依赖对象(观察者对象)都将得到通知.如果这样的依赖关系过于紧密,将使软件不能很好地抵御 ...

  3. 结合NGUI做的手机拍照(可自定义相框)

    原地址:http://www.unity蛮牛.com/thread-18220-1-1.html 在次此之前我们先要了解一下下面的我要讲的几个内容: 一.为什么要用NGUI,因为NGUI的可以做屏幕自 ...

  4. Sqli-labs less 31

    Less-31 Less-31与上述两个例子的方式是一样的,我们直接看到less-31的sql语句: 所以payload为: http://127.0.0.1:8080/sqli-labs/Less- ...

  5. 链表(c语言实现)--------------小练习

    #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_SIZE 100 #d ...

  6. poj 3615(floyd变形)

    题目链接:http://poj.org/problem?id=3615 思路:map[i][j]表示顶点i,j之间的最高的障碍物,于是题目要求的是最高障碍物的最小值,不就是min(map[i][j], ...

  7. linux系统中如何进入退出vim编辑器,方法及区别

    在linux家族中,vim编辑器是系统自带的文本编辑器,其功能强大自不必说了.偶有小白,刚接触linux,要修改某个文本文件,不可能像WINDOWS那样操作,更有甚者,进入VI编辑器后,无法退出以致强 ...

  8. java多线程知识点总结

    1.线程调度知识:线程类Thread的了解,几个thread的方法.thread.sleep(),thread.join().(调用join方法的那个线程会立刻执行). object.wait()方法 ...

  9. Linux Shell学习

    https://yunpan.cn/cMxw3i8TkcsWI (提取码:d4e1)

  10. Bootstrap下拉菜单dropdown-menu

    1.步骤 (1)要做为下拉菜单的li增加class="dropdown" (2)为li中文字添加超链接<a data-toggle="dropdown" ...