大数据时代的技术hive:hive介绍
我最近研究了hive的相关技术,有点心得,这里和大家分享下。
首先我们要知道hive到底是做什么的。下面这几段文字很好的描述了hive的特性:
1.hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
2.Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
要理解hive,必须先理解hadoop和mapreduce,如果有不熟悉的童鞋,可以百度一下。
使用hive的命令行接口,感觉很像操作关系数据库,但是hive和关系数据库还是有很大的不同,下面我就比较下hive与关系数据库的区别,具体如下:
- hive和关系数据库存储文件的系统不同,hive使用的是hadoop的HDFS(hadoop的分布式文件系统),关系数据库则是服务器本地的文件系统;
- hive使用的计算模型是mapreduce,而关系数据库则是自己设计的计算模型;
- 关系数据库都是为实时查询的业务进行设计的,而hive则是为海量数据做数据挖掘设计的,实时性很差;实时性的区别导致hive的应用场景和关系数据库有很大的不同;
- Hive很容易扩展自己的存储能力和计算能力,这个是继承hadoop的,而关系数据库在这个方面要比数据库差很多。
以上都是从宏观的角度比较hive和关系数据库的区别,hive和关系数据库的异同还有很多,我在文章的后面会一一描述。
下面我来讲讲hive的技术架构,大家先看下面的架构图:
由上图可知,hadoop和mapreduce是hive架构的根基。Hive架构包括如下组件:CLI(command line interface)、JDBC/ODBC、Thrift Server、WEB GUI、metastore和Driver(Complier、Optimizer和Executor),这些组件我可以分为两大类:服务端组件和客户端组件。
首先讲讲服务端组件:
Driver组件:该组件包括Complier、Optimizer和Executor,它的作用是将我们写的HiveQL(类SQL)语句进行解析、编译优化,生成执行计划,然后调用底层的mapreduce计算框架。
Metastore组件:元数据服务组件,这个组件存储hive的元数据,hive的元数据存储在关系数据库里,hive支持的关系数据库有derby、mysql。元数据对于hive十分重要,因此hive支持把metastore服务独立出来,安装到远程的服务器集群里,从而解耦hive服务和metastore服务,保证hive运行的健壮性,这个方面的知识,我会在后面的metastore小节里做详细的讲解。
Thrift服务:thrift是facebook开发的一个软件框架,它用来进行可扩展且跨语言的服务的开发,hive集成了该服务,能让不同的编程语言调用hive的接口。
客户端组件:
CLI:command line interface,命令行接口。
Thrift客户端:上面的架构图里没有写上Thrift客户端,但是hive架构的许多客户端接口是建立在thrift客户端之上,包括JDBC和ODBC接口。
WEBGUI:hive客户端提供了一种通过网页的方式访问hive所提供的服务。这个接口对应hive的hwi组件(hive web interface),使用前要启动hwi服务。
下面我着重讲讲metastore组件,具体如下:
Hive的metastore组件是hive元数据集中存放地。Metastore组件包括两个部分:metastore服务和后台数据的存储。后台数据存储的介质就是关系数据库,例如hive默认的嵌入式磁盘数据库derby,还有mysql数据库。Metastore服务是建立在后台数据存储介质之上,并且可以和hive服务进行交互的服务组件,默认情况下,metastore服务和hive服务是安装在一起的,运行在同一个进程当中。我也可以把metastore服务从hive服务里剥离出来,metastore独立安装在一个集群里,hive远程调用metastore服务,这样我们可以把元数据这一层放到防火墙之后,客户端访问hive服务,就可以连接到元数据这一层,从而提供了更好的管理性和安全保障。使用远程的metastore服务,可以让metastore服务和hive服务运行在不同的进程里,这样也保证了hive的稳定性,提升了hive服务的效率。
Hive的执行流程如下图所示:
图描述的很清晰了,我这里就不在累述了。
下面我给大家展示一个简单的例子,看看hive是怎么操作的。
首先我们创建一个普通的文本文件,里面只有一行数据,该行也只存储一个字符串,命令如下:
echo ‘sharpxiajun’ > /home/hadoop/test.txt |
然后我们建一张hive的表:
hive –e “create table test (value string ); |
接下来加载数据:
Load data local inpath ‘home/hadoop/test.txt’ overwrite into table test |
最后我们查询下表:
hive –e ‘ select * from test’; |
大家看到了吧,hive十分简单,很好入门,操作和sql很像,下面我就要深入分析下hive与关系数据库的区别,这部分可能有些人看的不是很明白,但是很有必要提前提出,以后我的文章里将进一步讲述hive,那时不太明白的童鞋在看看这部分,很多问题就会清晰很多,具体如下:
- 关系数据库里,表的加载模式是在数据加载时候强制确定的(表的加载模式是指数据库存储数据的文件格式),如果加载数据时候发现加载的数据不符合模式,关系数据库则会拒绝加载数据,这个就叫“写时模式”,写时模式会在数据加载时候对数据模式进行检查校验的操作。Hive在加载数据时候和关系数据库不同,hive在加载数据时候不会对数据进行检查,也不会更改被加载的数据文件,而检查数据格式的操作是在查询操作时候执行,这种模式叫“读时模式”。在实际应用中,写时模式在加载数据时候会对列进行索引,对数据进行压缩,因此加载数据的速度很慢,但是当数据加载好了,我们去查询数据的时候,速度很快。但是当我们的数据是非结构化,存储模式也是未知时候,关系数据操作这种场景就麻烦多了,这时候hive就会发挥它的优势。
- 关系数据库一个重要的特点是可以对某一行或某些行的数据进行更新、删除操作,hive不支持对某个具体行的操作,hive对数据的操作只支持覆盖原数据和追加数据。Hive也不支持事务和索引。更新、事务和索引都是关系数据库的特征,这些hive都不支持,也不打算支持,原因是hive的设计是海量数据进行处理,全数据的扫描时常态,针对某些具体数据进行操作的效率是很差的,对于更新操作,hive是通过查询将原表的数据进行转化最后存储在新表里,这和传统数据库的更新操作有很大不同。
- Hive也可以在hadoop做实时查询上做一份自己的贡献,那就是和hbase集成,hbase可以进行快速查询,但是hbase不支持类SQL的语句,那么此时hive可以给hbase提供sql语法解析的外壳,可以用类sql语句操作hbase数据库。
今天的hive就写到这里,关于hive我打算一共写三篇文章,这是第一篇,下一篇主要讲hive支持的数据模型,例如:数据库(database)、表(table)、分区(partition)和桶(bucket),还有hive文件存储的格式,还有hive支持的数据类型。第三篇文章就会讲到hiveQL的使用、以及结合mapreduce查询优化的技术和自定义函数,以及我们现在在公司项目里运用hive的实例。
马云在退休的时候说互联网现在进入了大数据时代,大数据是现在互联网的趋势,而hadoop就是大数据时代里的核心技术,但是hadoop和mapreduce操作专业型太强,所以facebook在这些的基础上开发了hive框架,毕竟世界上会sql的人比会java的人多的多,hive是可以说是学习hadoop相关技术的一个突破口,哪些自立于投身hadoop技术开发的童鞋们,可以先从hive开始哦。
转:http://www.cnblogs.com/sharpxiajun/archive/2013/06/02/3114180.html
大数据时代的技术hive:hive介绍的更多相关文章
- 大数据时代的技术hive:hive的数据类型和数据模型
在上篇文章里,我列举了一个简单的hive操作实例,创建了一张表test,并且向这张表加载了数据,这些操作和关系数据库操作类似,我们常把hive和关系数据库进行比较,也正是因为hive很多知识点和关系数 ...
- 云计算和大数据时代网络技术揭秘(十三)VXLAN
Vxlan(virtual Extensible LAN)虚拟可扩展局域网,是一种Overlay方式的网络技术,采用了mac in UDP的方式 进行封装,共50字节的报头.该技术的目标是解决虚拟机在 ...
- 云计算和大数据时代网络技术揭秘(八)数据中心存储FCoE
数据中心存储演化——FCoE 数据中心三大基础:主机 网络 存储 在云计算推动下,存储基础架构在发生演变 传统存储结构DAS.SAN在发展中遇到了布线复杂.能耗增多的缺点(原生性),需要对架构做根 ...
- 云计算和大数据时代网络技术揭秘(十七)VOQ机制
VOQ机制 本章介绍的VOQ是一种新型的QoS机制,目的是为了解决著名的交换机HoL难题. 但VOQ强烈依赖于调度算法,例如,一个48口的交换机,每个端口都要维护48-1个FIFO缓存队列, 一共48 ...
- 云计算和大数据时代网络技术揭秘(十二)自定义网络SDN
软件定义网络——SDN SDN是网络技术热点,即软件定义网络,OpenFlow是实现SDN思想的一个框架标准, open是指公开.开放,具体为控制平面的规则由各个通信厂家自定义变为公开的技术标准, f ...
- CentOS6安装各种大数据软件 第八章:Hive安装和配置
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- 转 开启“大数据”时代--大数据挑战与NoSQL数据库技术 iteye
一直觉得“大数据”这个名词离我很近,却又很遥远.最近不管是微博上,还是各种技术博客.论坛,碎碎念大数据概念的不胜枚举. 在我的理解里,从概念理解上来讲,大数据的目的在于更好的数据分析,否则如此大数据的 ...
- 技术期刊 · 天光台高未百尺 | Uber 工程师的 JS 算法课;大数据时代的个人隐私;设计师的 Github;告别 PPT 工程师;从零开始实现的像素画
蒲公英 · JELLY技术期刊 Vol.42 这是一个最好的时代,多样化的平台给了所有人成长发展的机会,各种需求和解决需求的人让人大开眼界:但这也并不是完美的时代,"前端还需要懂什么算法?& ...
- 2016中国大数据技术大会( BDTC ) 共商大数据时代发展之计
中国大数据技术大会(BDTC)的前身是Hadoop中国云计算大会(HadoopinChina,HiC).从2008年仅60余人参加的技术沙龙发展到当下数千人的技术盛宴,目前已成为国内最具影响力.规模最 ...
随机推荐
- 说说Java中的代理模式
今天看到传智播客李勇老师的JDBC系列的第36节——通过代理模式来保持用户关闭连接的习惯.讲的我彻底蒙蔽了,由于第一次接触代理模式,感到理解很难,在博客园找到一篇文章,先记录如下: 引用自java设计 ...
- android-exploitme(八):内存保护
如果一个手机被锁屏了,但是有个app还在后台运行,这个时候你想知道些app的信息,需要分析他的内存状态. 1. 首先运行模拟器,打开emm,使得模拟器返回锁屏状态 2. 打开ddms,下载内存文件
- 跨平台 c 开发库 tbox v1.6.0,支持跨平台协程
http://www.oschina.net/news/78582/tbox-v-1-6-0
- HighCharts开发说明及属性详解
一.HighCharts开发说明: HighCharts 开发实际上配置HighCharts每个部分,比如配置标题(title),副标题(subtitle)等,其中每个部分又有更细的参数配置,比如标题 ...
- HighCharts开发说明
一.HighCharts开发说明: HighCharts开发实际上配置HighCharts每个部分,比如配置标题(title),副标题(subtitle)等,其中每个部分又有更细的参数配置,比如标题下 ...
- SGU 106 The equation 扩展欧几里得好题
扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...
- c# 获取数组中最大数的值
求数组中最大的数的值:1.数组的max函数: class Program { static void Main(string[] args) { ,,,,,,,,,}; int max= GetMax ...
- HDOJ ----Phone List
Phone List Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Linux下安装Python-3.3.2【转】
# 下载最新版本 cd /usr/local/src/ sudo wget http://www.python.org/ftp/python/3.3.2/Python-3.3.2.tar.bz2 su ...
- [2014-03-13 08:46:42 - Dex Loader] Unable to execute dex: java.nio.BufferOverflowException. Check the Eclipse log for stack trace.
Unable to execute dex: java.nio.BufferOverflowException. Check the Eclipse log for stack trace. 问题提示 ...