题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3640

题意:给出一个无向图,从1走到n。开始是血量H,从u到达v时血量减少a[v]。每次走每条路径的概率相等。求走到n且血量大于0的概率。

思路:设f[h][u]表示到达u血量为h的概率。由于有的点到达时不掉血,这个不好弄。列出方程组,求出每个不掉血的点由哪些点到达以及他们的系数。比如x,y,z可到达r,r点不掉血,那么f[h][r]=p1*f[h][x]+p2*f[h][y]+p3*f[h][z]。这个p1、p2、p3就是r的系数。求逆矩阵可以得到。

const int N=155;

int n,m,K,B[N],A[N];
double x[N][N],num[N][N],f[11111][N];
int a[N][N];

void Gauss()
{
    int i,j,k;
    for(i=1;i<=n;i++)
    {
        for(j=i;j<=n;j++) if(fabs(x[j][i])>1e-10) break;
        if(j!=i)
        {
            for(k=1;k<=n;k++)
            {
                swap(x[i][k],x[j][k]);
                swap(num[i][k],num[j][k]);
            }
        }
        double tmp=x[i][i];
        for(k=1;k<=n;k++) x[i][k]/=tmp,num[i][k]/=tmp;
        for(j=1;j<=n;j++) if(j!=i)
        {
            tmp=x[j][i];
            for(k=1;k<=n;k++) x[j][k]-=x[i][k]*tmp,num[j][k]-=num[i][k]*tmp;
        }
    }
}
int main()
{

    scanf("%d%d%d",&n,&m,&K);
    int i,j,k;
    for(i=1;i<=n;i++) scanf("%d",&A[i]);
    for(i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        B[x]++;
        a[x][y]++;
        if(x!=y)
        {
            B[y]++;
            a[y][x]++;
        }
    }
    for(i=1;i<n;i++) for(j=1;j<=n;j++) if(!A[j]) x[j][i]-=1.0*a[i][j]/B[i];
    for(i=1;i<=n;i++) x[i][i]+=1,num[i][i]=1;
    Gauss();
    f[K][1]=1;
    double ans=0;
    for(k=K;k>=1;k--)
    {
        for(i=1;i<n;i++) for(j=1;j<=n;j++) if(A[j]&&k+A[j]<=K&&B[i])
        {
            f[k][j]+=f[k+A[j]][i]*a[i][j]/(B[i]);
        }
        double cs[N];
        for(i=1;i<=n;i++) cs[i]=f[k][i];
        for(i=1;i<=n;i++) if(!A[i])
        {
            f[k][i]=0;
            for(j=1;j<=n;j++) if(A[j]||j==1)f[k][i]+=num[i][j]*cs[j];
        }
        ans+=f[k][n];
    }
    printf("%.8lf\n",ans);
    return 0;
}

BZOJ 3640 JC的小苹果(逆矩阵)的更多相关文章

  1. BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]

    3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...

  2. BZOJ 3640: JC的小苹果

    3640: JC的小苹果 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 425  Solved: 155[Submit][Status][Discus ...

  3. ●BZOJ 3640 JC的小苹果

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3640题解: 期望dp,高斯消元 设dp[i][h]在i位置且血量为h这个状态的期望经过次数. ...

  4. 3640: JC的小苹果 - BZOJ

    让我们继续JC和DZY的故事.“你是我的小丫小苹果,怎么爱你都不嫌多!”“点亮我生命的火,火火火火火!”话说JC历经艰辛来到了城市B,但是由于他的疏忽DZY偷走了他的小苹果!没有小苹果怎么听歌!他发现 ...

  5. 【BZOJ】3640: JC的小苹果

    题解 我们考虑列出期望方程组,\(dp[i][j]\)表示在第\(i\)个点血量为\(j\)的时候到达\(N\)点的概率,所有的\(dp[N][j]\)都是1,所有\(j < 0\)都是0 答案 ...

  6. JC的小苹果 逆矩阵

    这题主要有两种做法:1种是用逆矩阵,转移时无须高斯消元.2是将常数项回代.这里主要介绍第一种. 首先题里少个条件:点权非负.设f [ i ][ j ]表示hp为i时,到达j点的期望次数. 那么若点权为 ...

  7. 【BZOJ 3640】JC的小苹果 (高斯消元,概率DP)

    JC的小苹果 Submit: 432  Solved: 159 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话 ...

  8. 【BZOJ3640】JC的小苹果 概率DP+高斯消元

    [BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...

  9. bzoj千题计划291:bzoj3640: JC的小苹果

    http://www.lydsy.com/JudgeOnline/problem.php?id=3640 dp[i][j] 表示i滴血到达j的概率 dp[i][j] = Σ dp[i+val[i]][ ...

随机推荐

  1. 夺命雷公狗jquery---4内容选择器

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. SQL删除重复数据方法

    例如: id           name         value 1               a                 pp 2               a           ...

  3. OpenStack 镜像密码修改办法

    Contents [hide] 1 场景 2 方案一 3 方案二 4 方案三 5 目前采用方案三 场景 用户将实例里的root密码修改了,/root/.ssh/的公钥文件删除了,然后把密码忘记了,需要 ...

  4. 鸟哥的linux私房菜学习记录之bash

    当你对计算机输入一个指令时,bash会将指令传送给核心kernel,核心再去调用相关的程序,启动硬件. 如果直接让用户操作操作系统,可能会造成系统的崩溃,所以操作系统通过应用程序来让用户操作系统即壳程 ...

  5. :first // :last

    描述: 获取匹配的第一个元素 HTML 代码: <ul> <li>list item 1</li> <li>list item 2</li> ...

  6. html插入视频

    http://www.jb51.net/web/168548.html http://www.w3school.com.cn/html/html_media.asp

  7. HTTP 请求未经客户端身份验证方案“Anonymous”授权。从服务器收到的身份验证标头为“Negotiate,NTLM”

    转自:http://www.cnblogs.com/geqinggao/p/3270499.html 近来项目需要Web Service验证授权,一般有两种解决方案: 1.通过通过SOAP Heade ...

  8. How To Set Up Apache Virtual Hosts on CentOS 6

    About Virtual Hosts 虚拟主机,用于在一个单一IP地址上,运行多个域.这对那些想在一个VPS上,运行多个网站的人,尤其有用.基于用户访问的不同网站,给访问者显示不同的信息.没有限制能 ...

  9. js声明

    var a = 2; //我们习惯把这条语句当做一条声明 但是js引擎把它当做两条声明. var a; //在编译时执行  同时var a;存在提升 a = 2;//在运行是执行  赋值lhs不会提升 ...

  10. 仿iOS底部弹出popUpWindow

    上面为弹出来的效果 popUpWindow布局: <?xml version="1.0" encoding="utf-8"?> <Linear ...