题意

题目链接

Sol

一个不太容易发现但是又很显然的性质:

如果有两个相邻的红格子,那么第一问答案为0, 第二问可以推

否则第一问答案为偶数格子上的白格子数,第二问答案为偶数格子上的红格子数

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1001, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[MAXN];
LL f[MAXN];
signed main() {
N = read();
int ans[2] = {0, 0}, flag = 0;
memset(f, 0x3f, sizeof(f));
for(int i = 1; i <= N; i++) {
a[i] = read();
if(i > 2 && a[i] && a[i] == a[i - 1]) flag = 1;
if((!(i & 1))) ans[a[i]]++;
if(a[i]) f[i] = 1;
}
if(!flag) {printf("%d\n%d", ans[0], ans[1]); return 0;}
for(int i = 2; i < N; i++) {
if(a[i] && a[i + 1]) {
for(int j = i - 1; j > 1; j--) chmin(f[j], f[j + 1] + f[j + 2]);
for(int j = i + 2; j < N; j++) chmin(f[j], f[j - 1] + f[j - 2]);
}
}
LL out = 0;
for(int i = 2; i < N; i += 2) out += f[i];
cout << 0 << "\n" << out;
return 0;
}
/*
5 0 0 1 1 0
*/

BZOJ1802: [Ahoi2009]checker(性质分析 dp)的更多相关文章

  1. 【BZOJ1802】[AHOI2009]checker(动态规划)

    [BZOJ1802][AHOI2009]checker(动态规划) 题面 BZOJ 洛谷 题解 首先自己观察一波,发现如果有相邻两个格子都是红色的话,那么显然可以在任意位置都存在一个跳棋.可以让两个位 ...

  2. [CQOI2009]叶子的染色【性质+树形Dp】

    Online Judge:Bzoj1304,Luogu P3155 Label:无根树,树形Dp 题目描述 给定一棵\(N\)个节点的无根树,它一共有\(K\)个叶子节点.你可以选择一个度数大于1的节 ...

  3. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  4. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  5. 旋转矩阵(Rotate Matrix)的性质分析

    博客转载自:http://www.cnblogs.com/caster99/p/4703033.html 学过矩阵理论或者线性代数的肯定知道正交矩阵(orthogonal matrix)是一个非常好的 ...

  6. Codeforces 348E 树的中心点的性质 / 树形DP / 点分治

    题意及思路:http://ydc.blog.uoj.ac/blog/12 在求出树的直径的中心后,以它为根,对于除根以外的所有子树,求出子树中的最大深度,以及多个点的最大深度的lca,因为每个点的最长 ...

  7. Codeforces 1067E - Random Forest Rank(找性质+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...

  8. BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...

  9. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

随机推荐

  1. Swift5 语言指南(二十七) 访问控制

    访问控制限制从其他源文件和模块中的代码访问部分代码.此功能使您可以隐藏代码的实现细节,并指定一个首选接口,通过该接口可以访问和使用该代码. 您可以为各个类型(类,结构和枚举)以及属于这些类型的属性,方 ...

  2. python实现音乐播放器

    python实现音乐播放器 模块:pygame 模块:time Python 布尔循环实例: import time import pygame muxi_k = """ ...

  3. js 正则语法

    原文:一次性搞懂javascript正则表达式之语法 看完原文,对正则中以前一知半解的捕获组与非捕获组.零宽断言有了更深的理解.很感谢原文作者~~ 普通字符 当我们写a的时候,我们指的就是a:当我们写 ...

  4. Git - 信息查看

    git help git version # Display the version of git. git help # Prints the synopsis and a list of the ...

  5. Windows Phone开发手记-WinRT下启动器替代方案

    在WP7/8时代,Silverlight框架提供了很多启动器API,我们可以很方便的使用的,来完成一些系统级的操作.但是随着Win RT架构的WP8.1(SL 8.1除外)的到来,原有的SL下的启动器 ...

  6. MySQL查询50例

    创建表和关系 /* 创建表 */ /*年级表*/ DROP TABLE IF EXISTS `class_grade`; CREATE TABLE `class_grade` ( `gid` int( ...

  7. java filter过滤器及责任链设计模式

    什么是Filter? Filter属于sevlet规范,翻译为过滤器. Filter在web开发中有什么作用? 案例一:一个web站点只有用户登录才能继续访问该站点的资源,那么需要用户每次访问都判断是 ...

  8. odoo开发笔记 -- odoo仪表板集成hightcharts

    highcharts图表插件初探 http://www.cnblogs.com/liubei/p/highchartsOption.html

  9. expr命令总结

    expr在linux中是一个功能非常强大的命令.通过学习做一个小小的总结.1.计算字符串的长度.我们可以用awk中的length(s)进行计算.我们也可以用echo中的echo ${#string}进 ...

  10. python for dblp.xml

    由于最近处理数据时涉及到dblp.xml,刚开始下载时dblp.xml只有300多M,但解压之后就有1.9G,没有什么东西能够打开,所以必须要用工具来处理,在python中sax包能够一边解析一边处理 ...