简介:

HashMap:

  具有很快的访问速度,但遍历顺序却是不确定的。

  HashMap最多只允许一条记录的键为null,允许多条记录的值为null。

  HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。

  HashMap的线程不安全主要体现在resize时的死循环及使用迭代器时的fast-fail上。

  如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。

Hashtable:

  Hashtable是遗留类,与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的。

  并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。

  Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

LinkedHashMap:

  LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

TreeMap:

  TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,

  当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。

存储结构:

位桶数组:

transient Node<k,v>[] table;

数组元素Node<K,V>:

static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //用来定位数组索引位置
final K key;
V value;
Node<K,V> next; //链表的下一个node Node(int hash, K key, V value, Node<K,V> next) { ... }
public final K getKey(){ ... }
public final V getValue() { ... }
public final String toString() { ... }
public final int hashCode() { ... }
public final V setValue(V newValue) { ... }
public final boolean equals(Object o) { ... }
}

hash冲突:

  开放地址法:Hi=(H(key)+di) MOD m i=1,2,…,k(k<=m-1),m为哈希表的表长。di 是产生冲突的时候的增量序列。

    如果di取1,则每次冲突之后,向后移动1个位置。

    如果di值可能为1,2,3,…m-1,称线性探测再散列。

    如果di取值可能为1,-1,2,-2,4,-4,9,-9,16,-16,…k*k,-k*k(k<=m/2),称二次探测再散列。

    如果di取值可能为伪随机数列。称伪随机探测再散列。

  链地址法:讲冲突的对象链在同一链表中。

  再哈希法:当发生冲突时,使用第二个、第三个、哈希函数计算地址,直到无冲突时。

  建立一个公共溢出区:就是把冲突的都放在另一个地方,不在表里面。

  Java中HashMap采用了链地址法。

  在每个数组元素上都有一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。

数据域:

public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable {
private static final long serialVersionUID = 362498820763181265L;
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量
static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比
//当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
transient Node<k,v>[] table;//存储元素的数组
transient Set<map.entry<k,v>> entrySet;
transient int size;//存放元素的个数
transient int modCount;//被修改的次数fast-fail机制
int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容
final float loadFactor;//填充比(......后面略)

  Node<k,v>[] table的初始化长度length(默认值是16)。

  length大小必须为2的n次方,主要是为了在取模和扩容时做优化,同时为了减少冲突。可以用hash&(len-1)的方式代替hash%len。

  Load factor:为负载因子(默认值是0.75)。

  threshold:是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。

  size:是HashMap中实际存在的键值对数量。

  modCount:主要用来记录HashMap内部结构发生变化的次数,用于迭代的快速失败。(覆盖值不属于结构变化)

确定索引位置:

    static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

  Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

  高位运算:通过hashCode()的高16位异或低16位实现

  它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。

  当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

put方法:

 public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} // 第三个参数 onlyIfAbsent 如果是 true,那么只有在不存在该 key 时才会进行 put 操作
// 第四个参数 evict 我们这里不关心
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 第一次 put 值的时候,会触发下面的 resize(),类似 java7 的第一次 put 也要初始化数组长度
// 第一次 resize 和后续的扩容有些不一样,因为这次是数组从 null 初始化到默认的 16 或自定义的初始容量
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 找到具体的数组下标,如果此位置没有值,那么直接初始化一下 Node 并放置在这个位置就可以了
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null); else {// 数组该位置有数据
Node<K,V> e; K k;
// 首先,判断该位置的第一个数据和我们要插入的数据,key 是不是"相等",如果是,取出这个节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果该节点是代表红黑树的节点,调用红黑树的插值方法,本文不展开说红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 到这里,说明数组该位置上是一个链表
for (int binCount = 0; ; ++binCount) {
// 插入到链表的最后面(Java7 是插入到链表的最前面)
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// TREEIFY_THRESHOLD 为 8,所以,如果新插入的值是链表中的第 9 个
// 会触发下面的 treeifyBin,也就是将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果在该链表中找到了"相等"的 key(== 或 equals)
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 此时 break,那么 e 为链表中[与要插入的新值的 key "相等"]的 node
break;
p = e;
}
}
// e!=null 说明存在旧值的key与要插入的key"相等"
// 对于我们分析的put操作,下面这个 if 其实就是进行 "值覆盖",然后返回旧值
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 如果 HashMap 由于新插入这个值导致 size 已经超过了阈值,需要进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

  java7中,新节点插入到链表头部,而java8是插入到链表尾部。

  Java7是先扩容后插入新值的,Java8 先插值再扩容。

扩容机制:

jdk1.7代码:

 1 void resize(int newCapacity) {   //传入新的容量
2 Entry[] oldTable = table; //引用扩容前的Entry数组
3 int oldCapacity = oldTable.length;
4 if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了
5 threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
6 return;
7 }
8
9 Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组
10 transfer(newTable); //!!将数据转移到新的Entry数组里
11 table = newTable; //HashMap的table属性引用新的Entry数组
12 threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }
 1 void transfer(Entry[] newTable) {
2 Entry[] src = table; //src引用了旧的Entry数组
3 int newCapacity = newTable.length;
4 for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
5 Entry<K,V> e = src[j]; //取得旧Entry数组的每个元素
6 if (e != null) {
7 src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
8 do {
9 Entry<K,V> next = e.next;
10 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
11 e.next = newTable[i]; //标记[1]
12 newTable[i] = e; //将元素放在数组上
13 e = next; //访问下一个Entry链上的元素
14 } while (e != null);
15 }
16 }
17 }

  newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;

  这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别

  1.7在并发情况下resize,可能会形成循环链表。

Jdk1.8所做的优化:

  我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。

  元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

  因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,

  是0的话索引没变,是1的话索引变成“原索引+oldCap(扩容前的容量)”,可以看看下图为16扩充为32的resize示意图:

  1.8的优化,省去了hash的时间,而且扩容后,元素的顺序不会变,1.7由于用的头插法所以会倒置

jdk1.8的代码:

 1 final Node<K,V>[] resize() {
2 Node<K,V>[] oldTab = table;
3 int oldCap = (oldTab == null) ? 0 : oldTab.length;
4 int oldThr = threshold;
5 int newCap, newThr = 0;
6 if (oldCap > 0) {
7 // 超过最大值就不再扩充了,就只好随你碰撞去吧
8 if (oldCap >= MAXIMUM_CAPACITY) {
9 threshold = Integer.MAX_VALUE;
10 return oldTab;
11 }
12 // 没超过最大值,就扩充为原来的2倍
13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14 oldCap >= DEFAULT_INITIAL_CAPACITY)
15 newThr = oldThr << 1; // double threshold
16 }
17 else if (oldThr > 0) // initial capacity was placed in threshold
18 newCap = oldThr;
19 else { // zero initial threshold signifies using defaults
20 newCap = DEFAULT_INITIAL_CAPACITY;
21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22 }
23 // 计算新的resize上限
24 if (newThr == 0) {
25
26 float ft = (float)newCap * loadFactor;
27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28 (int)ft : Integer.MAX_VALUE);
29 }
30 threshold = newThr;
31 @SuppressWarnings({"rawtypes","unchecked"})
32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33 table = newTab;
34 if (oldTab != null) {
35 // 把每个bucket都移动到新的buckets中
36 for (int j = 0; j < oldCap; ++j) {
37 Node<K,V> e;
38 if ((e = oldTab[j]) != null) {
39 oldTab[j] = null;
40 if (e.next == null)
41 newTab[e.hash & (newCap - 1)] = e;
42 else if (e instanceof TreeNode)
43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44 else { // 链表优化重hash的代码块
45 Node<K,V> loHead = null, loTail = null;
46 Node<K,V> hiHead = null, hiTail = null;
47 Node<K,V> next;
48 do {
49 next = e.next;
50 // 原索引
51 if ((e.hash & oldCap) == 0) {
52 if (loTail == null)
53 loHead = e;
54 else
55 loTail.next = e;
56 loTail = e;
57 }
58 // 原索引+oldCap
59 else {
60 if (hiTail == null)
61 hiHead = e;
62 else
63 hiTail.next = e;
64 hiTail = e;
65 }
66 } while ((e = next) != null);
67 // 原索引放到bucket里
68 if (loTail != null) {
69 loTail.next = null;
70 newTab[j] = loHead;
71 }
72 // 原索引+oldCap放到bucket里
73 if (hiTail != null) {
74 hiTail.next = null;
75 newTab[j + oldCap] = hiHead;
76 }
77 }
78 }
79 }
80 }
81 return newTab;
82 }

小结:

  扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

  负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

  HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。

  JDK1.8引入红黑树大程度优化了HashMap的性能。

参考:https://tech.meituan.com/java-hashmap.html

java8中的HashMap的更多相关文章

  1. 初探Java8中的HashMap(转)

    HashMap是我们最常用的集合之一,同时Java8也提升了HashMap的性能.本着学习的原则,在这探讨一下HashMap. 原理 简单讲解下HashMap的原理:HashMap基于Hash算法,我 ...

  2. Java8中的HashMap分析

    本篇文章是网上多篇文章的精华的总结,结合自己看源代码的一些感悟,其中线程安全性和性能测试部分并未做实践测试,直接是“拿来”网上的博客的. 哈希表概述 哈希表本质上一个数组,数组中每一个元素称为一个箱子 ...

  3. Java7与Java8中的HashMap和ConcurrentHashMap知识点总结

    JAVA7 Java7的ConcurrentHashMap里有多把锁,每一把锁用于其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率呢.这 ...

  4. java7,java8 中HashMap和ConcurrentHashMap简介

    一:Java7 中的HashMap 结构: HashMap 里面是一个数组,然后数组中每个元素是一个单向链表.链表中每个元素称为一个Entry 实例,Entry 包含四个属性:key, value, ...

  5. 【转】java8中谨慎使用实数作为HashMap的key!

    java8中谨慎使用实数作为HashMap的key! java8中一个hashCode()函数引发的血案java8中一个hashCode()函数引发的血案1.起因2.实数的hashCode()3.总结 ...

  6. java8中hashMap

    摘自:http://www.importnew.com/20386.html 简介 Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMa ...

  7. java8中map的meger方法的使用

    java8中map有一个merge方法使用示例: /** * 打印出包含号码集的label的集合 * * @param args */ public static void main(String[] ...

  8. Java8 中 ConcurrentHashMap工作原理的要点分析

    简介: 本文主要介绍Java8中的并发容器ConcurrentHashMap的工作原理,和其它文章不同的是,本文重点分析了不同线程的各类并发操作如get,put,remove之间是如何同步的,以及这些 ...

  9. Jdk1.8中的HashMap实现原理

    HashMap概述 HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. HashM ...

随机推荐

  1. vue中的minix

    minix 是个什么东西, 就是混合,把你混合给我 浅显表述就是 你说 : ‘我叫李四’, 我说 : ‘我叫张三’, 然后把你 混合给我, 就成了 我说 : ‘我叫张三我叫李四’, 所有解说都在例子里 ...

  2. 51nod 1295 XOR key (可持久化Trie树)

    1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个长度为N的正整数数组A,再给出Q个查 ...

  3. Fib的奇怪定理 : gcd(F[n],F[m])=F[gcd(n,m)]

    引理1:gcd(F[n],f[n-1])=1 因为 F[n]=f[n-1]+F[n-2] 所以 gcd(F[n],f[n-1]) = gcd(F[n-1]+F[n-2],F[n-1]) gcd的更损相 ...

  4. 【转】#pragma的用法

    在所有的预处理指令中,#Pragma 指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作.#pragma指令对每个编译器给出了一个方法,在保持与C和C++语言完全兼容的 ...

  5. 【CF522A】Reposts

    题目大意:给定一个有向图,求图中最长路. 题解:直接拓扑排序后按照拓扑序枚举即可.处理时应将字符串通过 map 映射成一个点,同时注意字符串大小写转换,C++ string 中没有提供直接大小写转换的 ...

  6. github使用记录

    背景:一直以来,对github既向往又排斥,是因为感觉高大尚有感觉很陌生.现在跟着辉哥学习项目技术,打算好好的学习下这个工具的使用. 1 基础常识 1.1 基础讲解 star的作用是收藏,目的是方便以 ...

  7. 前端常用功能记录(二)—datatables表格

    并不是所有的后台开发都有美工和前端工程师来配合做页面,为了显示数据并有一定的美感,jQuery的DataTables插件对于像我这样的前端菜鸟来说真是雪中送炭,当然对于专业的前端开发者来说它更是锦上添 ...

  8. 各种蕴含算法思想的DP - 2

    study from: https://www.cnblogs.com/flashhu/p/9480669.html 3.斜率dp study from:http://www.cnblogs.com/ ...

  9. RPC与RMI的区别

    分布式项目按照以下发展经历了以下技术: CORBA: RMI:基于远程接口的调用 RMI-RROP:这是RMI与CORBA的结合,用在了EJB技术上,EJB留给世界上是优秀的理论和糟糕的架构. WEB ...

  10. Kubernetes Service

    目录 基本概念 服务发现与负载均衡 配置Service 创建一个ClusterIP类型的Service 创建一个指定ClusterIP的Service 创建一个headless service 创建一 ...