生成器python
一、列表生成式
需求:看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = []
>>> for i in a:b.append(i+1)
...
>>> b
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = b
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [1,3,4,6,7,7,8,9,11] for index,i in enumerate(a):
a[index] +=1
print(a) 原值修改
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = map(lambda x:x+1, a)
>>> a
<map object at 0x101d2c630>
>>> for i in a:print(i)
...
3
5
7
9
11 文艺青年版
>>> a = [i+1 for i in range(10)]
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
二、生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
我们讲过,generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
注意,赋值语句: 1
a, b = b, a + b
相当于: 1
2
3
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max):
n,a,b = 0,0,1 while n < max:
#print(b)
yield b
a,b = b,a+b n += 1 return 'done'
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
data = fib(10)
print(data) print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__()) #输出
<generator object fib at 0x101be02b0>
1
干点别的事
3
8
在上面fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
>>> for n in fib(6):
... print(n)
...
1
3
8
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
关于如何捕获错误,后面的错误处理还会详细讲解。
还可通过yield实现在单线程的情况下实现并发运算的效果
#_*_coding:utf-8_*_
__author__ = 'Alex Li' import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i) producer("alex") 通过生成器实现协程并行运算
生成器python的更多相关文章
- 【简洁之美】裴波那切数列生成器 python
裴波那切数列可以用生成器较好的去生成,直接上代码: # 1 控制最大数字版本 def fib(max): x,y = 0,1 while y < max: yield x x,y = y,x+y ...
- 【python】迭代器&生成器
源Link:http://www.cnblogs.com/huxi/archive/2011/07/01/2095931.html 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素 ...
- Python可迭代对象、迭代器和生成器
Python可迭代对象.迭代器和生成器 python 函数 表达式 序列 count utf-8 云栖征文 python可迭代对象 python迭代器 python生成器 摘要: 8.1 可迭代对象( ...
- Python全栈开发之---迭代器、可迭代对象、生成器
1.什么叫迭代 现在,我们已经获得了一个新线索,有一个叫做“可迭代的”概念. 首先,我们从报错来分析,好像之所以1234不可以for循环,是因为它不可迭代.那么如果“可迭代”,就应该可以被for循环了 ...
- python进阶之生成器
迭代器 什么叫迭代 可以被for循环的就说明他们是可迭代的,比如:字符串,列表,字典,元祖,们都可以for循环获取里面的数据 下面我们看一个代码: number = 12345 for i in nu ...
- 完全理解 Python 迭代对象、迭代器、生成器(转)
完全理解 Python 迭代对象.迭代器.生成器 本文源自RQ作者的一篇博文,原文是Iterables vs. Iterators vs. Generators » nvie.com,俺写的这篇文章是 ...
- python基础篇_005_迭代器和生成器
Python迭代器和生成器 1.迭代器 迭代:可以将某个数据集内的数据“一个挨着一个的取出来” for i in range(1, 10, 2): # in 后面的对象必须是一个可迭代的 print( ...
- python基础之 迭代器回顾,生成器,推导式
1.迭代器回顾 可迭代对象:Iterable 可以直接作用于for循环的对象统称为可迭代对象:Iterable.因为可迭代对象里面存在可迭代协议,所以才会被迭代 可迭代对象包括: 列表(list) 元 ...
- Python爬虫与数据分析之进阶教程:文件操作、lambda表达式、递归、yield生成器
专栏目录: Python爬虫与数据分析之python教学视频.python源码分享,python Python爬虫与数据分析之基础教程:Python的语法.字典.元组.列表 Python爬虫与数据分析 ...
随机推荐
- idea 设置格式化代码 快捷键
- [Mark]Tomcat/IIS 更改 HTTP 侦听端口
目的: IIS HTTP 侦听端口改为 8088 Tomcat HTTP 侦听端口改为 80 环境: Windows Server 2012 R2 IIS8.5 (默认端口是 80) Tomcat8. ...
- 基于spring的redisTemplate的缓存工具类
pom.xml文件添加 <!-- config redis data and client jar --><dependency> <groupId>org.spr ...
- LeetCode Search for a Range (二分查找)
题意 Given a sorted array of integers, find the starting and ending position of a given target value. ...
- Meteor入门介绍
Meteor是什么 基于nodejs的实时web APP开发框架. Meteor能带来什么 简单的说,你可以用js搞定客户端.服务端的开发.另外,客户端.服务端的界限被极大的模糊.客户端的界面跟服务端 ...
- centos7 lldb 调试netcore应用的内存泄漏和死循环示例(dump文件调试)
写个demo来玩一玩linux平台下使用lldb加载sos来调试netcore应用. 当然,在真实的产线环境中需要分析的数据和难度远远高于demo所示,所以demo的作用也仅仅只能起到介绍工具的作用. ...
- Html_div圆角
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Unity 3D 简易制作摄像机围绕物体随鼠标旋转效果
Unity 3D 简易制作摄像机围绕物体随鼠标旋转效果 梗概: 一. 摄像机围绕目标物体旋转, 即摄像机离目标物体有一定的距离且旋转轴心为该物体的位置. 二. 当目标物体被障碍物挡住后, 需要将摄像机 ...
- openstack horizon 开发第二天
依照上次的简单的仪表盘添加动作额外添加或修改的文件mydashboard/├── mypanel│ ├── forms.py│ ├── tables.py│ ├── templates│ ...
- UI Recorder 安装教程(二)
前言: UI Recorder支持无线native app(Android, iOS)录制, 基于macaca实现:https://macacajs.com/ 本次教程只针对无线native app( ...