Redis进阶实践之十三 Redis的Redis-trib.rb脚本文件使用详解
转载来源:http://www.cnblogs.com/PatrickLiu/p/8484784.html
一、简介
事先说明一下,本篇文章不涉及对redis-trib.rb源代码的分析,只是从使用的角度来阐述一下,对第一次使用的人来说很重要。redis-trib.rb是redis官方推出的管理redis集群的工具,集成在redis的源码src目录下,是基于redis提供的集群命令封装成简单、便捷、实用的操作工具。这个文件可以在src这个目录下使用,也可以像redis-cli等命令一样,可以拷贝到单独目录,方便使用。redis-trib.rb是redis作者用ruby写成的,为了看懂redis-trib.rb的源码,我还要花一些时间来学学ruby。ruby这门语言我是在老赵的教程里面最早听说的,认为这个语言和我关系不大,当初也就没有在意,自然也就没学了。现在看来不行了,所以我就特意花了一个月的时间学习了一下ruby这门语言,同时也被ruby语言的简洁、明了所吸引。阅读本文需要对redis集群功能有一定的了解。关于redis集群功能的介绍,可以参考本人的另两篇文章,第一篇是《Redis进阶实践之十一 Redis的Cluster集群搭建》,第二篇是《Redis进阶实践之十二 Redis的Cluster集群动态扩容》。
二、Redis-trib.rb详细介绍
Redis-Trib.rb这个脚本文件的功能很强大,使用起来也很方便,我们就由浅入深来探讨这个脚本文件的使用吧。我们先来看看他的帮助信息吧,这个最简单,学习一门新技术的时候,也应该先看看帮助的东西。
1、#ruby redis-trib.rb help (Redis-Trib.rb的帮助信息)
2 3 [root@linux redis]# ruby redis-trib.rb help 4 Usage: redis-trib <command> <options> <arguments ...> 5 6 create host1:port1 ... hostN:portN 7 --replicas <arg> 8 check host:port 9 info host:port 10 fix host:port 11 --timeout <arg> 12 reshard host:port 13 --from <arg> 14 --to <arg> 15 --slots <arg> 16 --yes 17 --timeout <arg> 18 --pipeline <arg> 19 rebalance host:port 20 --weight <arg> 21 --auto-weights 22 --use-empty-masters 23 --timeout <arg> 24 --simulate 25 --pipeline <arg> 26 --threshold <arg> 27 add-node new_host:new_port existing_host:existing_port 28 --slave 29 --master-id <arg> 30 del-node host:port node_id 31 set-timeout host:port milliseconds 32 call host:port command arg arg .. arg 33 import host:port 34 --from <arg> 35 --copy 36 --replace 37 help (show this help) 38 39 For check, fix, reshard, del-node, set-timeout you can specify the host and port of any working node in the cluster.
(对于check,fix,reshard,del-node,settimeout,你可以指定集群中任何工作节点的主机和端口。)
可以看到redis-trib.rb具有以下功能:
1、create:创建集群
2、check:检查集群
3、info:查看集群信息
4、fix:修复集群
5、reshard:在线迁移slot
6、rebalance:平衡集群节点slot数量
7、add-node:将新节点加入集群
8、del-node:从集群中删除节点
9、set-timeout:设置集群节点间心跳连接的超时时间
10、call:在集群全部节点上执行命令
11、import:将外部redis数据导入集群
2、Create创建集群
命令格式:ruby redis-trib.rb create [--replicas <arg>] host1:port1 ... hostN:portN【地址列表必须大于等于3】
replicas参数是可选参数,表示每个Master主节点有几个slave从节点,如果该参数存在,必须在 host1:port1 ... hostN:portN 之前,如果省略了[--replicas <arg>]这个参数,只会创建最少3个Master主节点(因为Redis的Cluster集群模式要求最少3个主节点),并且分配好数据槽slots,但是,Slave从节点是不会创建的。
Master主节点没有Slave从节点,最简单命令使用如下:
[root@linux redis]# ruby redis-trib.rb create 192.168.127.129:7000 192.168.127.129:7001 192.168.127.129:7002 >>> Creating cluster >>> Performing hash slots allocation on 3 nodes... Using 3 masters: 192.168.127.129:7000 192.168.127.129:7001 192.168.127.129:7002 M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master Can I set the above configuration? (type 'yes' to accept): yes >>> Nodes configuration updated >>> Assign a different config epoch to each node >>> Sending CLUSTER MEET messages to join the cluster Waiting for the cluster to join. >>> Performing Cluster Check (using node 192.168.127.129:7000) M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master 0 additional replica(s) M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master 0 additional replica(s) M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master 0 additional replica(s) [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered.
每个Master主节点都有一个slave从节点的创建命令如下:
[root@linux redis]# ruby redis-trib.rb create --replicas 1 192.168.127.130:7000 192.168.127.130:7001 192.168.127.130:7002 192.168.127.130:7003 192.168.127.130:7004 192.168.127.130:7005
创建流程如下:
1、首先为每个节点创建ClusterNode对象,包括连接每个节点。检查每个节点是否为独立且db为空的节点。执行load_info方法导入节点信息。
2、检查传入的master节点数量是否大于等于3个。只有大于3个节点才能组成集群。
3、计算每个master需要分配的slot数量,以及给master分配slave。
4、打印出分配信息,并提示用户输入“yes”确认是否按照打印出来的分配方式创建集群。
5、输入“yes”后,会执行flush_nodes_config操作,该操作执行前面的分配结果,给master分配slot,让slave复制master,对于还没有握手(cluster meet)的节点,slave复制操作无法完成,不过没关系,flush_nodes_config操作出现异常会很快返回,后续握手后会再次执行flush_nodes_config。
6、给每个节点分配epoch,遍历节点,每个节点分配的epoch比之前节点大1。
7、节点间开始相互握手,握手的方式为节点列表的其他节点跟第一个节点握手。
8、然后每隔1秒检查一次各个节点是否已经消息同步完成,使用ClusterNode的get_config_signature方法,检查的算法为获取每个节点cluster nodes信息,排序每个节点,组装成node_id1:slots|node_id2:slot2|...的字符串。如果每个节点获得字符串都相同,即认为握手成功。
9、此后会再执行一次flush_nodes_config,这次主要是为了完成slave复制操作。
10、最后再执行check_cluster,全面检查一次集群状态。包括和前面握手时检查一样的方式再检查一遍。确认没有迁移的节点。确认所有的slot都被分配出去了。
11、至此完成了整个创建流程,返回[OK] All 16384 slots covered.。
3、Check检查集群主从状态信息
命令格式:ruby redis-trib.rb check host:port【此地址可以是集群中任何一个节点的地址,相当于获取集群信息的入口】
检查集群状态的命令,没有其他参数,只需要选择一个集群中的一个节点即可。执行命令以及结果如下:
[root@linux redis]# ruby redis-trib.rb check 192.168.127.130:7000 >>> Performing Cluster Check (using node 192.168.127.130:7000) M: a44081c39e7978c731a5c64476f4dc64e8d10c20 192.168.127.130:7000 slots:66-5460 (5395 slots) master 1 additional replica(s) S: be14cfa7cc064e75977ec8517c1eccf96e92aebf 192.168.127.130:7005 slots: (0 slots) slave replicates 3b025b3ecfa65f462de639c7a412be443cf1dd1c M: bafe517c084aadaacb0b0249dac1e706f24bc21f 192.168.127.130:7001 slots:5528-10922 (5395 slots) master 1 additional replica(s) S: b04d39427329b256fcb9b851e02d4b814314b280 192.168.127.130:7004 slots: (0 slots) slave replicates bafe517c084aadaacb0b0249dac1e706f24bc21f M: 3b025b3ecfa65f462de639c7a412be443cf1dd1c 192.168.127.130:7002 slots:0-65,5461-5527,10923-16383 (5594 slots) master 1 additional replica(s) S: b96aac031170a2aa42c619fbc08450bb51af372c 192.168.127.130:7003 slots: (0 slots) slave replicates a44081c39e7978c731a5c64476f4dc64e8d10c20 [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered.
检查前会先执行load_cluster_info_from_node方法,把所有节点数据load进来。load的方式为通过自己的cluster nodes发现其他节点,然后连接每个节点,并加入nodes数组。接着生成节点间的复制关系。load完数据后,开始检查数据,检查的方式也是调用创建时候使用的check_cluster。
4、Info查看集群主节点信息
命令格式:ruby redis-trib.rb info host:port【此地址可以是集群中任何一个节点的地址,相当于获取集群信息的入口】
info命令用来查看集群中Master主节点的信息。info命令也是先执行load_cluster_info_from_node获取完整的集群信息。
示例如下:
[root@linux redis]# ruby redis-trib.rb info 192.168.127.130:7000 192.168.127.130:7000 (a44081c3...) -> 3 keys | 5395 slots | 1 slaves. 192.168.127.130:7001 (bafe517c...) -> 1 keys | 5395 slots | 1 slaves. 192.168.127.130:7002 (3b025b3e...) -> 1 keys | 5594 slots | 1 slaves. [OK] 5 keys in 3 masters. 0.00 keys per slot on average.
5、Fix修复集群
命令格式:ruby redis-trib.rb fix --timeout <arg> host:port【此地址可以是集群中任何一个节点的地址,相当于获取集群信息的入口】
执行效果如下:
[root@linux redis]# ruby redis-trib.rb fix 192.168.127.130:7002 >>> Performing Cluster Check (using node 192.168.127.130:7002) M: 3b025b3ecfa65f462de639c7a412be443cf1dd1c 192.168.127.130:7002 slots:0-65,5461-5527,10923-16383 (5594 slots) master 1 additional replica(s) M: bafe517c084aadaacb0b0249dac1e706f24bc21f 192.168.127.130:7001 slots:5528-10922 (5395 slots) master 1 additional replica(s) S: b96aac031170a2aa42c619fbc08450bb51af372c 192.168.127.130:7003 slots: (0 slots) slave replicates a44081c39e7978c731a5c64476f4dc64e8d10c20 S: b04d39427329b256fcb9b851e02d4b814314b280 192.168.127.130:7004 slots: (0 slots) slave replicates bafe517c084aadaacb0b0249dac1e706f24bc21f M: a44081c39e7978c731a5c64476f4dc64e8d10c20 192.168.127.130:7000 slots:66-5460 (5395 slots) master 1 additional replica(s) S: be14cfa7cc064e75977ec8517c1eccf96e92aebf 192.168.127.130:7005 slots: (0 slots) slave replicates 3b025b3ecfa65f462de639c7a412be443cf1dd1c [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered. [root@linux redis]# ruby redis-trib.rb fix 192.168.127.130:7005 >>> Performing Cluster Check (using node 192.168.127.130:7005) S: be14cfa7cc064e75977ec8517c1eccf96e92aebf 192.168.127.130:7005 slots: (0 slots) slave replicates 3b025b3ecfa65f462de639c7a412be443cf1dd1c S: b96aac031170a2aa42c619fbc08450bb51af372c 192.168.127.130:7003 slots: (0 slots) slave replicates a44081c39e7978c731a5c64476f4dc64e8d10c20 M: 3b025b3ecfa65f462de639c7a412be443cf1dd1c 192.168.127.130:7002 slots:0-65,5461-5527,10923-16383 (5594 slots) master 1 additional replica(s) M: a44081c39e7978c731a5c64476f4dc64e8d10c20 192.168.127.130:7000 slots:66-5460 (5395 slots) master 1 additional replica(s) S: b04d39427329b256fcb9b851e02d4b814314b280 192.168.127.130:7004 slots: (0 slots) slave replicates bafe517c084aadaacb0b0249dac1e706f24bc21f M: bafe517c084aadaacb0b0249dac1e706f24bc21f 192.168.127.130:7001 slots:5528-10922 (5395 slots) master 1 additional replica(s) [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered.
1、fix命令的流程跟check的流程很像,显示加载集群信息,然后在check_cluster方法内传入fix为
true的变量,会在集群检查出现异常的时候执行修复流程。目前fix命令能修复两种异常,一种是集群有处于迁移中的slot的节点,一种是slot未完全分配的异常。
2、fix_open_slot方法是修复集群中在迁移slots数据槽的过程中节点的异常。
2.1、先检查该slot是谁负责的,迁移的源节点如果没完成迁移,owner还是该节点。没有owner的slot无法完成修复功能。
2.2、遍历每个节点,获取哪些节点的slot被标记为migrating【迁移】状态,哪些节点的slot被标记为importing【输入】状态。对于owner【所有者】不是该节点,但是通过cluster countkeysinslot获取到该节点有数据的情况,也认为该节点为importing【输入】状态。
2.3、如果migrating【迁移】和importing【输入】状态的节点均只有1个,这可能是迁移过程中redis-trib.rb被中断所致,直接执行move_slot继续完成迁移任务即可。传递dots和fix为true。
2.4、如果migrating【迁移】为空,importing【输入】状态的节点大于0,那么这种情况执行回滚流程,将importing【输入】状态的节点数据通过move_slot方法导给slot的owner【所有者】节点,传递dots、fix和cold为true。接着对importing的节点执行cluster stable命令恢复稳定。
2.5、如果importing【输入】状态的节点为空,有一个migrating【迁移】状态的节点,而且该节点在当前slot没有数据,那么可以直接把这个slot设为stable。
2.6、如果migrating【迁移】和importing【输入】状态不是上述情况,目前redis-trib.rb工具无法修复,上述的三种情况也已经覆盖了通过redis-trib.rb工具迁移出现异常的各个方面,人为的异常情形太多,很难考虑完全。
3、fix_slots_coverage方法能修复slot未完全分配的异常。未分配的slot有三种状态。
3.1、所有节点的该slot都没有数据。该状态redis-trib.rb工具直接采用随机分配的方式,并没有考虑节点的均衡。本人尝试对没有分配slot的集群通过fix修复集群,结果slot还是能比较平均的分配,但是没有了连续性,打印的slot信息非常离散。
3.2、有一个节点的该slot有数据。该状态下,直接把slot分配给该slot有数据的节点。
3.3、有多个节点的该slot有数据。此种情况目前还处于TODO状态,不过redis作者列出了修复的步骤,对这些节点,除第一个节点,执行cluster migrating命令,然后把这些节点的数据迁移到第一个节点上。清除migrating状态,然后把slot分配给第一个节点。
6、Reshard在线迁移slot
命令格式:ruby redis-trib.rb reshard --from <arg> host:port【此地址可以是集群中任何一个主节点的地址,相当于获取集群信息的入口】
--to <arg>
--slots <arg>
--yes
--timeout <arg>
--pipeline <arg>
reshard命令可以在线把集群的一些slot从集群原来slot负责节点迁移到新的节点,利用reshard可以完成集群的在线横向扩容和缩容。
reshard的参数很多,下面来一一解释一番:
host:port:这个是必传参数,用来从一个节点获取整个集群信息,相当于获取集群信息的入口。
--from <arg>:需要从哪些源节点上迁移slot,可从多个源节点完成迁移,以逗号隔开,传递的是节点的node id,还可以直接传递--from all,这样源节点就是集群的所有节点,不传递该参数的话,则会在迁移过程中提示用户输入。
--to <arg>:slot需要迁移的目的节点的node id,目的节点只能填写一个,不传递该参数的话,则会在迁移过程中提示用户输入。
--slots <arg>:需要迁移的slot数量,不传递该参数的话,则会在迁移过程中提示用户输入。
--yes:设置该参数,可以在打印执行reshard计划的时候,提示用户输入yes确认后再执行reshard。
--timeout <arg>:设置migrate命令的超时时间。
--pipeline <arg>:定义cluster getkeysinslot命令一次取出的key数量,不传的话使用默认值为10。
执行代码实例:
[root@linux redis]# ruby redis-trib.rb reshard --from all --to 34aff9de9f005b23dc1ae090d1791edb6277b255 --slots 200 --yes 192.168.127.129:7000 >>> Performing Cluster Check (using node 192.168.127.129:7000) M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master 1 additional replica(s) S: 30a872bdf2ec16fabbd8fcb7e08514dffec09364 192.168.127.129:7005 slots: (0 slots) slave replicates 7e41f26c96c796c6ad546df836b93d2aadf9e13c M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master 1 additional replica(s) S: 69ada8a4fe3784597480bd8bddbeb57ab08a8f34 192.168.127.129:7004 slots: (0 slots) slave replicates d16665971f9a1f5715fd7365314436c99ba6e7ef M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master 1 additional replica(s) M: 34aff9de9f005b23dc1ae090d1791edb6277b255 192.168.127.129:7006 slots: (0 slots) master 0 additional replica(s) S: ee0e0688c0258c34f9673a44e5bc97374abaeb5d 192.168.127.129:7003 slots: (0 slots) slave replicates 454e7e2ca5e70103ae19926e139dc212ad084637 [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered. Ready to move 200 slots. Source nodes: M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master 1 additional replica(s) M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master 1 additional replica(s) M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master 1 additional replica(s) Destination node: M: 34aff9de9f005b23dc1ae090d1791edb6277b255 192.168.127.129:7006 slots: (0 slots) master 0 additional replica(s) Resharding plan: Moving slot 5461 from d16665971f9a1f5715fd7365314436c99ba6e7ef Moving slot 5462 from d16665971f9a1f5715fd7365314436c99ba6e7ef Moving slot 5463 from d16665971f9a1f5715fd7365314436c99ba6e7ef Moving slot 5464 from d16665971f9a1f5715fd7365314436c99ba6e7ef Moving slot 5465 from d16665971f9a1f5715fd7365314436c99ba6e7ef //省略。。。。 Moving slot 10943 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10977 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10978 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10979 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10980 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10981 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10982 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10983 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10984 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10985 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10986 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10987 from 192.168.127.129:7002 to 192.168.127.129:7006: Moving slot 10988 from 192.168.127.129:7002 to 192.168.127.129:7006:
迁移的流程如下:
1、通过load_cluster_info_from_node方法装载集群信息。
2、执行check_cluster方法检查集群是否健康。只有健康的集群才能进行迁移。
3、获取需要迁移的slot数量,用户没传递--slots参数,则提示用户手动输入。
4、获取迁移的目的节点,用户没传递--to参数,则提示用户手动输入。此处会检查目的节点必须为master节点。
5、获取迁移的源节点,用户没传递--from参数,则提示用户手动输入。此处会检查源节点必须为master节点。--from all的话,源节点就是除了目的节点外的全部master节点。这里为了保证集群slot分配的平均,建议传递--from all。
6、执行compute_reshard_table方法,计算需要迁移的slot数量如何分配到源节点列表,采用的算法是按照节点负责slot数量由多到少排序,计算每个节点需要迁移的slot的方法为:迁移slot数量 * (该源节点负责的slot数量 / 源节点列表负责的slot总数)。这样算出的数量可能不为整数,这里代码用了下面的方式处理:
n = (numslots/source_tot_slots*s.slots.length)
if i == 0
n = n.ceil
else
n = n.floor
这样的处理方式会带来最终分配的slot与请求迁移的slot数量不一致,这个BUG已经在github上提给作者, https://github.com/antirez/redis/issues/2990。
7、打印出reshard计划,如果用户没传--yes,就提示用户确认计划。
8、根据reshard计划,一个个slot的迁移到新节点上,迁移使用move_slot方法,该方法被很多命令使用,具体可以参见下面的迁移流程。move_slot方法传递dots为true和pipeline数量。
9、至此,就完成了全部的迁移任务。
move_slot方法可以在线将一个slot的全部数据从源节点迁移到目的节点,fix、reshard、rebalance都需要调用该方法迁移slot。
move_slot接受下面几个参数,
1、pipeline:设置一次从slot上获取多少个key。
2、quiet:迁移会打印相关信息,设置quiet参数,可以不用打印这些信息。
3、cold:设置cold,会忽略执行importing和migrating。
4、dots:设置dots,则会在迁移过程打印迁移key数量的进度。
5、update:设置update,则会更新内存信息,方便以后的操作。
move_slot流程如下:
1、如果没有设置cold,则对源节点执行cluster importing命令,对目的节点执行migrating命令。fix的时候有可能importing和migrating已经执行过来,所以此种场景会设置cold。
2、通过cluster getkeysinslot命令,一次性获取远节点迁移slot的pipeline个key的数量.
3、对这些key执行migrate命令,将数据从源节点迁移到目的节点。
4、如果migrate出现异常,在fix模式下,BUSYKEY的异常,会使用migrate的replace模式再执行一次,BUSYKEY表示目的节点已经有该key了,replace模式可以强制替换目的节点的key。不是fix模式就直接返回错误了。
5、循环执行cluster getkeysinslot命令,直到返回的key数量为0,就退出循环。
6、如果没有设置cold,对每个节点执行cluster setslot命令,把slot赋给目的节点。
7、如果设置update,则修改源节点和目的节点的slot信息。
8、至此完成了迁移slot的流程。
7、Rebalance平衡集群节点slot数量
命令格式:ruby redis-trib.rb rebalance --weight <arg> host:port【此地址可以是集群中任何一个节点的地址,相当于获取集群信息的入口】
--auto-weights
--threshold <arg>
--use-empty-masters
--timeout <arg>
--simulate
--pipeline <arg>
rebalance命令可以根据用户传入的参数平衡集群节点的slot数量,rebalance功能非常强大,可以传入的参数很多。
以下是rebalance的参数列表和命令示例。
# ruby redis-trib.rb rebalance --threshold 1 --weight b31e3a2e=5 --weight 60b8e3a1=5 --use-empty-masters --simulate 10.180.157.199:6379
下面也先一一解释下每个参数的用法:
host:port:这个是必传参数,用来从一个节点获取整个集群信息,相当于获取集群信息的入口。
--weight <arg>:节点的权重,格式为node_id=weight,如果需要为多个节点分配权重的话,需要添加多个--weight <arg>参数,即--weight b31e3a2e=5 --weight 60b8e3a1=5,node_id可为节点名称的前缀,只要保证前缀位数能唯一区分该节点即可。没有传递 –weight的节点的权重默认为1。
--auto-weights:这个参数在rebalance流程中并未用到。
--threshold <arg>:只有节点需要迁移的slot阈值超过threshold,才会执行rebalance操作。具体计算方法可以参考下面的rebalance命令流程的第四步。
--use-empty-masters:rebalance是否考虑没有节点的master,默认没有分配slot节点的master是不参与rebalance的,设置--use-empty-masters可以让没有分配slot的节点参与rebalance。
--timeout <arg>:设置migrate命令的超时时间。
--simulate:设置该参数,可以模拟rebalance操作,提示用户会迁移哪些slots,而不会真正执行迁移操作。
--pipeline <arg>:与reshar的pipeline参数一样,定义cluster getkeysinslot命令一次取出的key数量,不传的话使用默认值为10。
rebalance命令流程如下:
1、load_cluster_info_from_node方法先加载集群信息。
2、计算每个master的权重,根据参数--weight <arg>,为每个设置的节点分配权重,没有设置的节点,则权重默认为1。
3、根据每个master的权重,以及总的权重,计算自己期望被分配多少个slot。计算的方式为:总slot数量 * (自己的权重 / 总权重)。
4、计算每个master期望分配的slot是否超过设置的阈值,即--threshold <arg>设置的阈值或者默认的阈值。计算的方式为:先计算期望移动节点的阈值,算法为:(100-(100.0*expected/n.slots.length)).abs,如果计算出的阈值没有超出设置阈值,则不需要为该节点移动slot。只要有一个master的移动节点超过阈值,就会触发rebalance操作。
5、如果触发了rebalance操作。那么就开始执行rebalance操作,先将每个节点当前分配的slots数量减去期望分配的slot数量获得balance值。将每个节点的balance从小到大进行排序获得sn数组。
6、用dst_idx和src_idx游标分别从sn数组的头部和尾部开始遍历。目的是为了把尾部节点的slot分配给头部节点。
sn数组保存的balance列表排序后,负数在前面,正数在后面。负数表示需要有slot迁入,所以使用dst_idx游标,正数表示需要有slot迁出,所以使用src_idx游标。理论上sn数组各节点的balance值加起来应该为0,不过由于在计算期望分配的slot的时候只是使用直接取整的方式,所以可能出现balance值之和不为0的情况,balance值之和不为0即为节点不平衡的slot数量,由于slot总数有16384个,不平衡数量相对于总数,基数很小,所以对rebalance流程影响不大。
7、获取sn[dst_idx]和sn[src_idx]的balance值较小的那个值,该值即为需要从sn[src_idx]节点迁移到sn[dst_idx]节点的slot数量。
8、接着通过compute_reshard_table方法计算源节点的slot如何分配到源节点列表。这个方法在reshard流程中也有调用,具体步骤可以参考reshard流程的第六步。
9、如果是simulate模式,则只是打印出迁移列表。
10、如果没有设置simulate,则执行move_slot操作,迁移slot,传入的参数为:quiet=>true,:dots=>false,:update=>true。
11、迁移完成后更新sn[dst_idx]和sn[src_idx]的balance值。如果balance值为0后,游标向前进1。
12、直到dst_idx到达src_idx游标,完成整个rebalance操作。
8、add-node将新节点加入集群
命令格式:ruby redis-trib.rb add-node --slave new_host:new_port existing_host:existing_port【此地址可以是集群中任何一个节点的地址,相当于获取集群信息的入口】
--master-id <arg>
add-node命令可以将新节点加入集群,节点可以为master,也可以为某个master节点的slave。
add-node有两个可选参数:
--slave:设置该参数,则新节点以slave的角色加入集群
--master-id:这个参数需要设置了--slave才能生效,--master-id用来指定新节点的master节点。如果不设置该参数,则会随机为节点选择master节点。
这两个参数(--slave,--master-id)并没有先后顺序,但是这两个参数必须在 add-node 之后,new_host:new_port existing_host:existing_port参数之前。
可以看下add-node命令的执行示例(我们将192.168.127.129:7003作为192.168.127.129:7000的从节点增加进集群):
[root@linux redis]# ruby redis-trib.rb add-node --slave --master-id 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7003 192.168.127.129:7000 >>> Adding node 192.168.127.129:7003 to cluster 192.168.127.129:7000 >>> Performing Cluster Check (using node 192.168.127.129:7000) M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master 0 additional replica(s) M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master 0 additional replica(s) M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master 0 additional replica(s) [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered. >>> Send CLUSTER MEET to node 192.168.127.129:7003 to make it join the cluster. Waiting for the cluster to join. >>> Configure node as replica of 192.168.127.129:7000. [OK] New node added correctly.
可以看下add-node命令的执行示例(我们将192.168.127.129:7004作为192.168.127.129:7001的从节点增加进集群):
[root@linux redis]# ruby redis-trib.rb add-node --slave --master-id d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7004 192.168.127.129:7001 >>> Adding node 192.168.127.129:7004 to cluster 192.168.127.129:7001 >>> Performing Cluster Check (using node 192.168.127.129:7001) M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master 0 additional replica(s) S: ee0e0688c0258c34f9673a44e5bc97374abaeb5d 192.168.127.129:7003 slots: (0 slots) slave replicates 454e7e2ca5e70103ae19926e139dc212ad084637 M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master 1 additional replica(s) M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master 0 additional replica(s) [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered. >>> Send CLUSTER MEET to node 192.168.127.129:7004 to make it join the cluster. Waiting for the cluster to join. >>> Configure node as replica of 192.168.127.129:7001. [OK] New node added correctly. [root@linux redis]#
可以看下add-node命令的执行示例(我们将192.168.127.129:7005作为192.168.127.129:7000的从节点增加进集群,此时7000已有从节点,但是7005并没有作为7000的从节点,而是作为7002的从节点,因为当时7002没从节点):
[root@linux redis]# ruby redis-trib.rb add-node --master-id 454e7e2ca5e70103ae19926e139dc212ad084637 --slave 192.168.127.129:7005 192.168.127.129:7000 >>> Adding node 192.168.127.129:7005 to cluster 192.168.127.129:7000 >>> Performing Cluster Check (using node 192.168.127.129:7000) M: 454e7e2ca5e70103ae19926e139dc212ad084637 192.168.127.129:7000 slots:0-5460 (5461 slots) master 1 additional replica(s) M: 7e41f26c96c796c6ad546df836b93d2aadf9e13c 192.168.127.129:7002 slots:10923-16383 (5461 slots) master 0 additional replica(s) S: 69ada8a4fe3784597480bd8bddbeb57ab08a8f34 192.168.127.129:7004 slots: (0 slots) slave replicates d16665971f9a1f5715fd7365314436c99ba6e7ef M: d16665971f9a1f5715fd7365314436c99ba6e7ef 192.168.127.129:7001 slots:5461-10922 (5462 slots) master 1 additional replica(s) S: ee0e0688c0258c34f9673a44e5bc97374abaeb5d 192.168.127.129:7003 slots: (0 slots) slave replicates 454e7e2ca5e70103ae19926e139dc212ad084637 [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered. >>> Send CLUSTER MEET to node 192.168.127.129:7005 to make it join the cluster. Waiting for the cluster to join. >>> Configure node as replica of 192.168.127.129:7000. [OK] New node added correctly.
add-node流程如下:
1、通过load_cluster_info_from_node方法转载集群信息,check_cluster方法检查集群是否健康。
2、如果设置了--slave,则需要为该节点寻找master节点。设置了--master-id,则以该节点作为新节点的master,如果没有设置--master-id,则调用get_master_with_least_replicas方法,寻找slave数量最少的master节点。如果slave数量一致,则选取load_cluster_info_from_node顺序发现的第一个节点。load_cluster_info_from_node顺序的第一个节点是add-node设置的existing_host:existing_port节点,后面的顺序根据在该节点执行cluster nodes返回的结果返回的节点顺序。
3、连接新的节点并与集群第一个节点握手。
4、如果没设置–slave就直接返回ok,设置了–slave,则需要等待确认新节点加入集群,然后执行cluster replicate命令复制master节点。
5、至此,完成了全部的增加节点的流程。
9、del-node从集群中删除节点
命令格式:ruby redis-trib.rb del-node host:port node-id【node id是要删除的节点ID标识】
del-node可以把某个节点从集群中删除。del-node只能删除没有分配slot的节点。删除命令传递两个参数:
host:port:从该节点获取集群信息。
node_id:需要删除的节点id。
del-node执行结果示例如下:
[root@linux redis]# ruby redis-trib.rb del-node 192.168.127.129:7006 34aff9de9f005b23dc1ae090d1791edb6277b255 >>> Removing node 34aff9de9f005b23dc1ae090d1791edb6277b255 from cluster 192.168.127.129:7006 >>> Sending CLUSTER FORGET messages to the cluster... >>> SHUTDOWN the node.
del-node流程如下:
1、通过load_cluster_info_from_node方法转载集群信息。
2、根据传入的node id获取节点,如果节点没找到,则直接提示错误并退出。
3、如果节点分配的slot不为空,则直接提示错误并退出。
4、遍历集群内的其他节点,执行cluster forget命令,从每个节点中去除该节点。如果删除的节点是master,而且它有slave的话,这些slave会去复制其他master,调用的方法是get_master_with_least_replicas,与add-node没设置--master-id寻找master的方法一样。
5、然后关闭该节点
10、set-timeout设置集群节点间心跳连接的超时时间
命令格式:ruby redis-trib.rb set-timeout host:port milliseconds
set-timeout用来设置集群节点间心跳连接的超时时间,单位是毫秒,不得小于100毫秒,因为100毫秒对于心跳时间来说太短了。该命令修改是节点配置参数cluster-node-timeout,默认是15000毫秒。通过该命令,可以给每个节点设置超时时间,设置的方式使用config set命令动态设置,然后执行config rewrite命令将配置持久化保存到硬盘。以下是示例:
[root@linux redis]# ruby redis-trib.rb set-timeout 192.168.127.130:7000 15000 >>> Reconfiguring node timeout in every cluster node... *** New timeout set for 192.168.127.130:7000 *** New timeout set for 192.168.127.130:7002 *** New timeout set for 192.168.127.130:7003 *** New timeout set for 192.168.127.130:7005 *** New timeout set for 192.168.127.130:7004 *** New timeout set for 192.168.127.130:7001 >>> New node timeout set. 6 OK, 0 ERR.
11、call在集群全部节点上执行命令
命令格式:ruby redis-trib.rb call host:port [command redis的命令]
call命令可以用来在集群的全部节点执行相同的命令。call命令也是需要通过集群的一个节点地址,连上整个集群,然后在集群的每个节点执行该命令。
[root@linux redis]# ruby redis-trib.rb call 192.168.127.130:7000 get key >>> Calling GET key
192.168.127.130:7000: MOVED 12539 192.168.127.130:7002
192.168.127.130:7002:
192.168.127.130:7003: MOVED 12539 192.168.127.130:7002
192.168.127.130:7005: MOVED 12539 192.168.127.130:7002
192.168.127.130:7004: MOVED 12539 192.168.127.130:7002
192.168.127.130:7001: MOVED 12539 192.168.127.130:7002
12、import将外部redis数据导入集群
命令格式:ruby redis-trib.rb import --from host:port host:port
执行示例如下:
[root@linux redis]# ruby redis-trib.rb import --from 192.168.127.130:7006 192.168.127.129:7000
上面的命令是把 192.168.127.130:7006(redis 4.8)上的数据导入到 192.168.127.129:7000 这个节点所在的集群
import命令可以把外部的redis节点数据导入集群。导入的流程如下:
1、通过load_cluster_info_from_node方法转载集群信息,check_cluster方法检查集群是否健康。
2、连接外部redis节点,如果外部节点开启了cluster_enabled,则提示错误。
3、通过scan命令遍历外部节点,一次获取1000条数据。
4、遍历这些key,计算出key对应的slot。
5、执行migrate命令,源节点是外部节点,目的节点是集群slot对应的节点,如果设置了--copy参数,则传递copy参数,如果设置了--replace,则传递replace参数。
6、不停执行scan命令,直到遍历完全部的key。
7、至此完成整个迁移流程
这中间如果出现异常,程序就会停止。没使用--copy模式,则可以重新执行import命令,使用--copy的话,最好清空新的集群再导入一次。
import命令更适合离线的把外部redis数据导入,在线导入的话最好使用更专业的导入工具,以slave的方式连接redis节点去同步节点数据应该是更好的方式。
三、总结
好了,今天就写到这里,有关redis-trib.rb脚步文件的内容还很多,以后再补充进来吧。这个脚本文件对我们很重要,集群的操作很多功能都可以通过这个脚本文件来完成。
Redis进阶实践之十三 Redis的Redis-trib.rb脚本文件使用详解的更多相关文章
- Redis进阶实践之十三 Redis的Redis-trib.rb文件详解
一.简介 事先说明一下,本篇文章不涉及对redis-trib.rb源代码的分析,只是从使用的角度来阐述一下,对第一次使用的人来说很重要.redis-trib.rb是redis官方推出的管理re ...
- Redis进阶实践之十二 Redis的Cluster集群动态扩容
一.引言 上一篇文章我们一步一步的教大家搭建了Redis的Cluster集群环境,形成了3个主节点和3个从节点的Cluster的环境.当然,大家可以使用 Cluster info 命令查看Cl ...
- Redis进阶实践之十六 Redis大批量增加数据
一.介绍 有时,Redis实例需要在很短的时间内加载大量先前存在或用户生成的数据,以便尽可能快地创建数百万个键.这就是所谓的批量插入,本文档的目标是提供有关如何以尽可能快的速度向Redis提 ...
- Redis进阶实践之十八 使用管道模式加速Redis查询
一.引言 学习redis 也有一段时间了,该接触的也差不多了.后来有一天,以为同事问我,如何向redis中批量的增加数据,肯定是大批量的,为了这主题,我从新找起了解决方案.目前 ...
- Redis进阶实践之九 独立封装的RedisClient客户端工具类(转载9)
Redis进阶实践之九 独立封装的RedisClient客户端工具类 一.引言 今天开始有关Redis学习的第九篇文章了,以后肯定会大量系统使用Redis作为缓存介质,为了更好的更好的Redis,自己 ...
- Redis进阶实践之七Redis和Lua初步整合使用(转载 7)
Redis进阶实践之七Redis和Lua初步整合使用 一.引言 Redis学了一段时间了,基本的东西都没问题了.从今天开始讲写一些redis和lua脚本的相关的东西,lua这个脚本是一个好东西,可以运 ...
- Redis进阶实践之六Redis Desktop Manager连接Windows和Linux系统上的Redis服务(转载6)
Redis进阶实践之六Redis Desktop Manager连接Windows和Linux系统上的Redis服务 一.引言 今天本来没有打算写这篇文章,但是,今天测试Redis的时候发现了两个问题 ...
- Redis进阶实践之五Redis的高级特性(转载 5)
Redis进阶实践之五Redis的高级特性 一.引言 上一篇文章写了Redis的特征,使用场景,同时也介绍了Redis的基本数据类型,redis的数据类型是操作redis的基础,这个必须好好的掌握.今 ...
- Redis进阶实践之四Redis的基本数据类型(转载4)
Redis进阶实践之四Redis的基本数据类型 一.引言 今天正式开始了Redis的学习,如果要想学好Redis,必须先学好Redis的数据类型.Redis为什么会比以前的Memchaed等内存缓存软 ...
随机推荐
- 使用terraform-provider-s3 操作minio
尽管默认官方提供了s3 的操作,但是对于开源minio 无法支持,更多的是aws 的s3,社区提供了一个通用 s3 操作的provider(基于minio 的sdk) 环境准备 docker-comp ...
- Using Elixir Dynamic Supervisors
转自: https://blog.smartlogic.io/elixir-dynamic-supervisors/ I have been working on my side project Gr ...
- 【网络协议】TCP分段与IP分片
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/mmc_maodun/article/details/30109789 我们在学习TCP/IP ...
- VIM命令操作
退出命令 :wq 保存并退出 ZZ 保存并退出 :q! 强制退出并忽略所有更改 :e! 放弃所有修改,并打开原来文件.
- python之路---09 初始函数 参数
二十七.初始函数 1.函数: 对代码块和功能的封装和定义 2.格式及语法 def 函数名() # 定义 函数体 函数名() # 调用 3. r ...
- storage 事件监听
在公司的一次内部分享会上, 偶然知道了这个H5的新事件, 解决了我之前的一个bug. 事情是这样的, 第A网页上显示的数量的总和, 点击去是B页面, 可以进行管理, 增加或者删除, 当用户做了增删操作 ...
- ES6 中 Class 与 TypeScript 中 Class 的区别(待补充)
ES6 中 Class 与 TypeScript 中 Class 的区别(待补充)
- [c/c++]fopen用法及参数介绍
函数定义: FILE * fopen ( const char * filename, const char * mode ); 参数mode: "r" read: 为输入操作打开 ...
- Scrapy 设置请求头
爬虫的过程有些网站设置反盗链,需要我们在请求头中添加下,修改settings.py文件中添加 DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,appl ...
- 2.初步认识Angular2
简述:一个完整的Angular应用主要由六个重要部分构成,分别是:组件,模板,指令,服务,依赖注入,和路由.这些组成部分各司其职,而又紧密协作. 其中,与用户直接打交互的是模板视图,它是构成组件的要素 ...