如果直接dp,状态里肯定要带上已走过的点的集合,感觉上不太好做。

  考虑一种对期望的minmax容斥:其中Max(S)为遍历完S集合的期望步数,Min(S)为遍历到S集合中一个点的期望步数。当然才不管怎么证,反正看上去非常优美。

  设f[i][S]为由i节点出发的Min(S),显然有f[i][S]=Σf[j][S]/di+1。暴力高斯消元复杂度就炸掉了。

  注意到给出的是一棵树,现在连这个性质都没用到当然没法做。根据一个我没见过的套路,可以考虑把f[i]表示成a·f[fa]+b的形式,大力推一波式子就可以了。

  求出f后,暴力枚举子集容斥进行预处理是O(3n)的,类似高维前缀和直接递推就是O(2nn)。然后就可以O(1)回答每个询问了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 18
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,S,p[N],f[N][<<N],size[<<N],d[N],a[N],b[N],t;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
void dfs(int k,int from,int S)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from) dfs(edge[i].to,k,S);
if (S&(<<k)) a[k]=b[k]=;
else
{
int A=,B=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from) A=(A+a[edge[i].to])%P,B=(B+b[edge[i].to])%P;
a[k]=inv((d[k]-A+P)%P),b[k]=1ll*(B+d[k])*a[k]%P;
}
}
void dfs2(int k,int from,int S)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
f[edge[i].to][S]=(1ll*a[edge[i].to]*f[k][S]+b[edge[i].to])%P;
dfs2(edge[i].to,k,S);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj2542.in","r",stdin);
freopen("loj2542.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),S=read()-;
for (int i=;i<n;i++)
{
int x=read()-,y=read()-;
addedge(x,y),addedge(y,x);
d[x]++,d[y]++;
}
for (int i=;i<(<<n);i++)
for (int j=;j<n;j++)
if (i&(<<j)) {dfs(j,j,i);dfs2(j,j,i);break;}
for (int i=;i<(<<n);i++)
{
size[i]=size[i^(i&-i)]+;
if (!(size[i]&)) f[S][i]=(P-f[S][i])%P;
}
for (int i=;i<n;i++)
for (int j=;j<(<<n);j++)
if (j&(<<i)) f[S][j]=(f[S][j]+f[S][j^(<<i)])%P;
/*for (int i=(1<<n)-1;i;i--)
for (int j=i^(i&-i);j;j=j-1&i)
f[S][i]=(f[S][i]+f[S][j])%P;*/
while (m--)
{
int k=read(),x=;
for (int i=;i<=k;i++) x|=<<read()-;
printf("%d\n",f[S][x]);
}
return ;
}

LOJ2542 PKUWC2018随机游走(概率期望+容斥原理)的更多相关文章

  1. LOJ #2542 [PKUWC2018]随机游走 (概率期望、组合数学、子集和变换、Min-Max容斥)

    很好很有趣很神仙的题! 题目链接: https://loj.ac/problem/2542 题意: 请自行阅读 题解首先我们显然要求的是几个随机变量的最大值的期望(不是期望的最大值),然后这玩意很难求 ...

  2. LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望

    传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...

  3. [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)

    MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...

  4. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

  5. [PKUWC2018] 随机游走

    Description 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 ...

  6. [LOJ#2542] [PKUWC2018] 随机游走

    题目描述 给定一棵 n 个结点的树,你从点 x 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 Q 次询问,每次询问给定一个集合 S,求如果从 x 出发一直随机游走,直到点集 S 中所有点都 ...

  7. 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)

    点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...

  8. 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)

    题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...

  9. 题解-PKUWC2018 随机游走

    Problem loj2542 题意:一棵 \(n\) 个结点的树,从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去,询问走完一个集合 \(S\)的期望时间,多组询问 \(n\le ...

随机推荐

  1. C++之内联函数

    C++语言新增关键字 inline,用于将一个函数声明为内联函数.在程序编译时,编译器会将内联函数调用处用函数体替换,这一点类似于C语言中的宏扩展. 采用内联函数可以有效避免函数调用的开销,程序执行效 ...

  2. Jmeter之目录结构

    首先得了解一下这些东西,以后才能快速的找到某些配置文件进行修改(举个例子,改配置只是其中之一) 一.bin目录examples:  目录中有CSV样例 jmeter.bat  windows的启动文件 ...

  3. rsync+inotifywait

    0.rsync+inotify是实现文件实时同步的,加什么参数才能实现实时同步,--delete参数又是什么意思? 1.运行模式(服务器) rsync有两种常用的认证方式,一种是rsync-daemo ...

  4. MVC 在action方法中获取当前action的控制器名和action名

    如何在某个action方法中获取它所在的控制器和action名称呢. string controllerName = Request.RequestContext.RouteData.Values[& ...

  5. phpstorm开发环境搭建流程

    1.下载phpstorm 2.网上找注册码 phpstorm 8 license key Learn Programming===== LICENSE BEGIN =====63758-1204201 ...

  6. Java IO 文件

    在java应用程序中,文件是一种常用的数据源或者存储数据的媒介.所以这一小节将会对Java中文件的使用做一个简短的概述.这里只提供一些必要的知识点. 通过Java IO读文件 如果你需要在不同端之间读 ...

  7. 一个有趣的异步时序逻辑电路设计实例 ——MFM调制模块设计笔记

    本文从本人的163博客搬迁至此. MFM是改进型频率调制的缩写,其本质是一种非归零码,是用于磁介质硬盘存储的一种调制方式.调制规则有两句话,即两个翻转条件: 1.为1的码元在每个码元的正中进行一次翻转 ...

  8. 20155328 《网络攻防》 实验一:PC平台逆向破解(5)M

    20155328 <网络攻防> 实验一:PC平台逆向破解(5)M 实践目标 实践对象:linux可执行文件pwn1. 正常执行时,main调用foo函数,foo函数会简单回显任何用户输入的 ...

  9. EZ 2017 12 17初二初三第一次膜你赛

    以后平时练习还是写一写吧. (题目搞来搞去太烦了,直接PDF存起来) T1 水题(???),主要是数据水,正解是设一个阙值,然而根本没人打.(暴力出奇迹) CODE #include<cstdi ...

  10. [APIO2013]机器人[搜索、斯坦纳树]

    题意 题目链接 分析 记 g(d,x,y) 表示从 (x,y) 出发,方向为 d 到达的点,这个可以通过记忆化搜索求出,注意如果转移成环(此时向这个方向走没有意义)要特判. 记 f(l,r,x,y) ...