如果直接dp,状态里肯定要带上已走过的点的集合,感觉上不太好做。

  考虑一种对期望的minmax容斥:其中Max(S)为遍历完S集合的期望步数,Min(S)为遍历到S集合中一个点的期望步数。当然才不管怎么证,反正看上去非常优美。

  设f[i][S]为由i节点出发的Min(S),显然有f[i][S]=Σf[j][S]/di+1。暴力高斯消元复杂度就炸掉了。

  注意到给出的是一棵树,现在连这个性质都没用到当然没法做。根据一个我没见过的套路,可以考虑把f[i]表示成a·f[fa]+b的形式,大力推一波式子就可以了。

  求出f后,暴力枚举子集容斥进行预处理是O(3n)的,类似高维前缀和直接递推就是O(2nn)。然后就可以O(1)回答每个询问了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 18
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,S,p[N],f[N][<<N],size[<<N],d[N],a[N],b[N],t;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
void dfs(int k,int from,int S)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from) dfs(edge[i].to,k,S);
if (S&(<<k)) a[k]=b[k]=;
else
{
int A=,B=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from) A=(A+a[edge[i].to])%P,B=(B+b[edge[i].to])%P;
a[k]=inv((d[k]-A+P)%P),b[k]=1ll*(B+d[k])*a[k]%P;
}
}
void dfs2(int k,int from,int S)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
f[edge[i].to][S]=(1ll*a[edge[i].to]*f[k][S]+b[edge[i].to])%P;
dfs2(edge[i].to,k,S);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj2542.in","r",stdin);
freopen("loj2542.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),S=read()-;
for (int i=;i<n;i++)
{
int x=read()-,y=read()-;
addedge(x,y),addedge(y,x);
d[x]++,d[y]++;
}
for (int i=;i<(<<n);i++)
for (int j=;j<n;j++)
if (i&(<<j)) {dfs(j,j,i);dfs2(j,j,i);break;}
for (int i=;i<(<<n);i++)
{
size[i]=size[i^(i&-i)]+;
if (!(size[i]&)) f[S][i]=(P-f[S][i])%P;
}
for (int i=;i<n;i++)
for (int j=;j<(<<n);j++)
if (j&(<<i)) f[S][j]=(f[S][j]+f[S][j^(<<i)])%P;
/*for (int i=(1<<n)-1;i;i--)
for (int j=i^(i&-i);j;j=j-1&i)
f[S][i]=(f[S][i]+f[S][j])%P;*/
while (m--)
{
int k=read(),x=;
for (int i=;i<=k;i++) x|=<<read()-;
printf("%d\n",f[S][x]);
}
return ;
}

LOJ2542 PKUWC2018随机游走(概率期望+容斥原理)的更多相关文章

  1. LOJ #2542 [PKUWC2018]随机游走 (概率期望、组合数学、子集和变换、Min-Max容斥)

    很好很有趣很神仙的题! 题目链接: https://loj.ac/problem/2542 题意: 请自行阅读 题解首先我们显然要求的是几个随机变量的最大值的期望(不是期望的最大值),然后这玩意很难求 ...

  2. LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望

    传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...

  3. [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)

    MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...

  4. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

  5. [PKUWC2018] 随机游走

    Description 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 ...

  6. [LOJ#2542] [PKUWC2018] 随机游走

    题目描述 给定一棵 n 个结点的树,你从点 x 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 Q 次询问,每次询问给定一个集合 S,求如果从 x 出发一直随机游走,直到点集 S 中所有点都 ...

  7. 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)

    点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...

  8. 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)

    题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...

  9. 题解-PKUWC2018 随机游走

    Problem loj2542 题意:一棵 \(n\) 个结点的树,从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去,询问走完一个集合 \(S\)的期望时间,多组询问 \(n\le ...

随机推荐

  1. rpm yum apt-get redhat centos ubuntu

    rpm是由红帽公司开发的软件包管理方式,使用rpm我们可以方便的进行软件的安装.查询.卸载.升级等工作.但是rpm软件包之间的依赖性问题往往会很繁琐,尤其是软件由多个rpm包组成时.Yum(全称为 Y ...

  2. php中addslashes(),htmlspecialchars()

    参考转自http://czf2008700.blog.163.com/blog/static/2397283200937103250194/ addslashes -- 使用反斜线引用字符串 stri ...

  3. 网络对抗技术 2017-2018-2 20152515 Exp7 信息搜集与漏洞扫描

    1. 实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. DNS欺骗就是攻击者冒充域名服务器的一种欺骗行为. 原理:如果可以冒充域名服务器,然后把查询的 ...

  4. 20155232《网络对抗》Exp 6 信息搜集与漏洞扫描

    20155232<网络对抗>Exp 6 信息搜集与漏洞扫描 一.实践内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版 ...

  5. 20155304《网络对抗》Exp4 恶意代码分析

    20155304<网络对抗>Exp4 恶意代码分析 实践内容 1.系统运行监控 1.1使用schtasks指令监控系统运行 我们在C盘根目录下建立一个netstatlog.bat的文本文件 ...

  6. Linux下的openvpn配置 与 easy-rsa3的证书生成

    #注意:以下操作由服务端操作即可#PS:为什么我找不到var文件??============安装===============wget -O /etc/yum.repos.d/epel.repo ht ...

  7. [CF986F]Oppa Funcan Style Remastered[exgcd+同余最短路]

    题意 给你 \(n\) 和 \(k\) ,问能否用 \(k\) 的所有 \(>1\) 的因子凑出 \(n\) .多组数据,但保证不同的 \(k\) 不超过 50 个. \(n\leq 10^{1 ...

  8. js 边写边出现刚写的内容

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. tree的使用,显示行号,find命令应用

    第1章 linux启动过程 1.开机自检bios 2.mbr引导 3.GRUB 菜单:选择不同的内核 4.加载内核 5.运行init进程 6.读取/etc/inittab运行级别配置文件 7.执行 / ...

  10. python3 subprocess模块

    当我们在执行python程序的时候想要执行系统shell可以使用subprocess,这时可以新起一个进程来执行系统的shell命令,python3常用的有subprocess.run()和subpr ...