Java实现线性阈值模型(Linear Threshold Model)
影响力传播的线性阈值模型:
网络中连接任意两个节点u,v之间的边都有权重,任意一个节点它的各个邻居节点的边的权重之和为1,即
N(v):neighbors of v.
网络中的节点分为已激活节点和未激活节点,每个节点都有一个自己的激活阈值Θ(每个节点的激活阈值可以不同,且现实情况下社交网络的各个用户的激活阈值一般不相同,有的用户活跃,阈值低,容易受人影响,而有的用户较沉默,阈值高)。未被激活的节点v受所有与之相邻且已被激活的节点u的影响。当未激活节点v与所有已被激活的邻居节点的边的权重之和达到或超过激活阈值Θ时,节点v就会被激活。
即当满足条件:
Na(v):active neighbors of v.
v被激活之后,它也会以同样的方式影响它自己的未被激活的邻居节点。这样会有越来越多的,满足激活条件的节点被激活,直到最后再也没有新的节点被激活了,激活过程才会停止。
上述过程被称为影响力传播的线性阈值模型(Linear Threshold Model),传播过程停止时最终被激活的节点的数量被称为影响力的传播范围(Influence Spread)。
无向无权图的线性阈值模型的Java实现:
public int beginDiffusionProcess(ArrayList<Node> graph,ArrayList<Integer> activeNodeIds,int lastInfSpread)
{
//Mark the active neighbors of each node.
for(Node nd:graph)
{
for(Node n:nd.neighbors)
{
if(activeNodeIds.contains(n.nodeId))
{
n.setActive(true);
}
}
} //Determine whether each node is activated or not.
for(Node nd:graph)
{
int activeNeighbor_Num=0;
for(Node n:nd.neighbors)
{
if(n.isActive())
{
activeNeighbor_Num++;
}
}
if (activeNeighbor_Num/(nd.neighbors.size()*1.0)>=nd.getThreshold())//如果是带权图,这里要修改
{
nd.setActive(true);
activeNodeIds.add(nd.nodeId);
}
}
//Get the influence spread of the current step.
int infSpread=0;
for(Node n:graph)
{
if(n.isActive())
{
infSpread++;
}
}
//If it converges,stop the diffusion process,else continue the next step.
if(lastInfSpread==infSpread)
return infSpread;
else
return beginDiffusionProcess(graph,activeNodeIds,infSpread);
}
下面的代码调用上述方法,获取最终的Influence Spread:
public int GetInfSpread(ArrayList<Node> graph)
{
ArrayList<Integer> activeNodeIds=new ArrayList<Integer>();
//this.dimensions是已经被激活的种子节点,是某一个类的静态属性,类型为ArrayList<Node>,这些节点会尝试激活它们的邻居节点。
for(Node n:this.dimensions)
{
activeNodeIds.add(n.nodeId);
}
int lastInfSpread=0;
return beginDiffusionProcess(graph, activeNodeIds,lastInfSpread);
}
其他相关的代码:
Node.java
import java.util.ArrayList; public class Node implements Comparable<Node>
{
public int nodeId;
public ArrayList<Node> neighbors = new ArrayList<Node>();
private boolean b_isActive = false;
private double threshold = 0.0; public Node(int nodeId, double threshold)
{
this.nodeId = nodeId;
this.threshold = threshold;
} public int neighbors_num()
{
return this.neighbors.size();
} public void setActive(boolean isActive)
{
this.b_isActive = isActive;
} public boolean isActive(){
return this.b_isActive;
}
public double getThreshold(){
return this.threshold;
}
// Sort nodes by (out)degree
public int compareTo(Node anotherNode)
{
if (this.neighbors != null && anotherNode.neighbors != null)
{
// reverse order
return anotherNode.neighbors_num() - this.neighbors_num();
// positive order
// return this.neighbors_num()-anotherNode.neighbors_num();
}
return 0;
}
}
Java实现线性阈值模型(Linear Threshold Model)的更多相关文章
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...
- 开始 Keras 序列模型(Sequential model)
开始 Keras 序列模型(Sequential model) 序列模型是一个线性的层次堆栈. 你可以通过传递一系列 layer 实例给构造器来创建一个序列模型. The Sequential mod ...
- 计算广告学-多点归因模型(Multi-Touch Attribution Model)
计算广告学中的一个重要的问题是, 如果用户产生了一次转化(conversion, 比如购买, 注册等), 且该用户在转化之前看过大量不同频道(比如搜索, 展示, 社交等等)的广告, 那么我们如何确定是 ...
- 生成模型(Generative Model)Vs 判别模型(Discriminative Model)
概率图分为有向图(bayesian network)与无向图(markov random filed).在概率图上可以建立生成模型或判别模型.有向图多为生成模型,无向图多为判别模型. 判别模型(D ...
- CSS学习笔记——视觉格式化模型 visual formatting model
CSS 视觉格式化模型(visual formatting model)是用来处理文档并将它显示在视觉媒体上的机制.他有一套既定的规则(也就是W3C规范),规定了浏览器该怎么处理每一个盒子.以下内容翻 ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- 关于JAVA中的static方法、并发问题以及JAVA运行时内存模型
一.前言 最近在工作上用到了一个静态方法,跟同事交流的时候,被一个问题给问倒了,只怪基础不扎实... 问题大致是这样的,“在多线程环境下,静态方法中的局部变量会不会被其它线程给污染掉?”: 我当时的想 ...
随机推荐
- emoji表情 与 iconfont 一锅炖😂
什么是emoji?
- Android之什么是Activity和常用的ADB命令以及Android项目结构的认识
总结一下之前学习Android的一些内容 一: Android常用的ADB命令(adb android调试桥) 1.adb devices 查看模拟器设备并重新连接. 2.adb ki ...
- html&css复习题(参考答案)
1. 常用的块属性标签及特征有哪些? 常用块标签:Div h1~ h6 ol ul li dl td dd table tr th td p br form 块标签特征:独占一行,换行显 ...
- poj3581
Sequence Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 6893 Accepted: 1534 Case Tim ...
- Javascript动态执行JS(new Function与eval比较)
new Function与eval可以动态执行JS,只要把拼接好的JS方法,然后以字符串的形式传入到这两个函数,可以执行,其中new Function用在模板引擎比较多. 用 Function 类直接 ...
- ffmpeg 音频转换(amr2mp3)
yasm:http://yasm.tortall.net/Download.html(汇编器,新版本的ffmpeg增加了汇编代码) lame:http://lame.sourceforge.net/d ...
- noip2012 开车旅行
此题100分的解法就是先预处理出每个点的下一个点之后倍增就好了.其实并没有太大难度. pbihao用双向链表写过了此题.在本地上我treap狂操他,but在rqnoj上,我依靠反复提交才A掉此题(最后 ...
- thinkphp 3.2.3 动态修改conf配置文件
thinkphp 3.2.3 的C()方法能修改配置文件,但是是动态修改的,没有真正的更改文件. 我查了网上网友分享的方法,都不怎么合适,我就自己摸索写了一个,配置写到text.php中,我的目录如下 ...
- Jenkins安装
直接下载使用Jenkins有两种方式:一种是下载war包安装.另一种是下载.zip进行安装. 一..zip解压安装 1.下载Jenkins:地址http://mirrors.jenkins-ci.or ...
- spring boot + swagger + mysql + maven
1.首先编写 yaml 文件,创建项目所需的接口,在swagger.io官网上生成 spring boot项目: 2.由于生成的spring boot项目是公共类的所以还需要修改成所需的项目名称,主要 ...