spark支持的常见文件格式如下:

文本,json,CSV,SequenceFiles,Protocol buffers,对象文件

1.文本

只需要使用文件路径作为参数调用SparkContext 中的textFile() 函数,就可以读取一个文
本文件;

scala> val lines=sc.textFile("/tmp/20171024/20171024.txt")

lines: org.apache.spark.rdd.RDD[String] = /tmp/20171024/20171024.txt MapPartitionsRDD[1] at textFile at <console>:24

scala> lines.collect

res0: Array[String] = Array(10 20 30 50 80 100 60 90 60 60 31 80 70 51 50)

求每个文件的平均值:

scala> val linesall=sc.wholeTextFiles("/tmp/20171024/2017*.txt")

linesall: org.apache.spark.rdd.RDD[(String, String)] = /tmp/20171024/2017*.txt MapPartitionsRDD[7] at wholeTextFiles at <console>:24

scala> linesall.collect

res4: Array[(String, String)] = Array((hdfs://localhost:9000/tmp/20171024/20171024.txt,"10 20 30 50 80 100 60 90 60 60 31 80 70 51 50 "), (hdfs://localhost:9000/tmp/20171024/20171026.txt,"100 500 600 800 10 30 66 96 89 80 100 "))

scala> val result=linesall.mapValues{y=>val nums=y.split(" ").map(x=>x.toDouble);nums.sum/nums.size}.collect
result: Array[(String, Double)] = Array((hdfs://localhost:9000/tmp/20171024/20171024.txt,56.13333333333333), (hdfs://localhost:9000/tmp/20171024/20171026.txt,224.63636363636363))

保存计算结果:

scala> linesall.mapValues{y=>val nums=y.split(" ").map(x=>x.toDouble);nums.sum/nums.size}.saveAsTextFile("/tmp/20171024/result0.txt")

查看保存的结果:

[root@host bin]# hdfs dfs -lsr /tmp/20171024/result0*
lsr: DEPRECATED: Please use 'ls -R' instead.
-rw-r--r--   1 root supergroup          0 2017-10-26 17:00 /tmp/20171024/result0.txt/_SUCCESS
-rw-r--r--   1 root supergroup         68 2017-10-26 17:00 /tmp/20171024/result0.txt/part-00000
-rw-r--r--   1 root supergroup         69 2017-10-26 17:00 /tmp/20171024/result0.txt/part-00001

2.json

读取json,将数据作为文本文件读取,然后对JSON 数据进行解析。

scala> import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.hive.HiveContext

scala> val hiveCtx = new HiveContext(sc)

warning: there was one deprecation warning; re-run with -deprecation for details hiveCtx: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@1dbb9a4a

scala> val json=hiveCtx.jsonFile("/tmp/20171024/namejson.txt")

warning: there was one deprecation warning; re-run with -deprecation for details json: org.apache.spark.sql.DataFrame = [age: bigint, id: bigint ... 1 more field]

scala> json.printSchema()

root

|-- age: long (nullable = true)

|-- id: long (nullable = true)

|-- name: string (nullable = true)

scala> json.registerTempTable("t_name")

warning: there was one deprecation warning; re-run with -deprecation for details

scala>

scala> val all=hiveCtx.sql("select * from t_name")

all: org.apache.spark.sql.DataFrame = [age: bigint, id: bigint ... 1 more field]

scala> all.show

+---+---+-----+

|age| id| name|

+---+---+-----+

| 18|  1|  leo|

| 19|  2| jack|

| 17|  3|marry|

+---+---+-----+

3.读取csv

scala> import java.io.StringReader import java.io.StringReader

scala> import au.com.bytecode.opencsv.CSVReader import au.com.bytecode.opencsv.CSVReader

scala> import scala.collection.JavaConversions._

scala> val input=sc.wholeTextFiles("/tmp/20171024/game*.csv") input: org.apache.spark.rdd.RDD[(String, String)] = /tmp/20171024/game*.csv MapPartitionsRDD[1] at wholeTextFiles at <console>:26

scala> input.collect

res0: Array[(String, String)] = Array((hdfs://localhost:9000/tmp/20171024/gamelist.csv,""9041","167","百人牛牛" "9041","174","将相和" "9041","152","百家乐" "9041","194","血战到底" "9041","4009","推到胡" "9041","4010","红中王" "9041","4098","二人麻将" "9041","4077","福建麻将" "9041","4039","血流成河" "9041","178","178" "))

scala> case class gamelist(id:String,subid:String,name:String)

defined class gamelist

scala> val result = input.flatMap { case (_, txt) => val reader = new CSVReader(new StringReader(txt));reader.readAll().map(x => gamelist(x(0), x(1), x(2))) }
result: org.apache.spark.rdd.RDD[gamelist] = MapPartitionsRDD[2] at flatMap at <console>:33

scala> result.collect
res1: Array[gamelist] = Array(gamelist(9041,167,百人牛牛), gamelist(9041,174,将相和), gamelist(9041,152,百家乐), gamelist(9041,194,血战到底), gamelist(9041,4009,推到胡), gamelist(9041,4010,红中王), gamelist(9041,4098,二人麻将), gamelist(9041,4077,福建麻将), gamelist(9041,4039,血流成河), gamelist(9041,178,178))

sparksql读取csv如下:

scala> import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SQLContext

scala> val sqltext=new SQLContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details

注释:.option("header","false") //如果在csv第一行没有列头就是"false"
  .option("inferSchema",true.toString)//这是自动推断属性列的数据类型。

scala> val data=sqltext.read.format("com.databricks.spark.csv").option("header","false").option("inferSchema",true.toString).load("/tmp/20171024/game*.csv")
data: org.apache.spark.sql.DataFrame = [_c0: int, _c1: int ... 1 more field]
scala> data.collect
res25: Array[org.apache.spark.sql.Row] = Array([9041,167,百人牛牛], [9041,174,将相和], [9041,152,百家乐], [9041,194,血战到底], [9041,4009,推到胡], [9041,4010,红中王], [9041,4098,二人麻将], [9041,4077,福建麻将], [9041,4039,血流成河], [9041,178,178])nt ... 1 more field]

scala> import org.apache.spark.sql.types.{StructType,StructField,StringType};
import org.apache.spark.sql.types.{StructType, StructField, StringType}

scala> val struct1=StructType(StructType(Array(StructField("id",StringType,true),StructField("subid",StringType,true),StructField("name",StringType,true))))
struct1: org.apache.spark.sql.types.StructType = StructType(StructField(id,StringType,true), StructField(subid,StringType,true), StructField(name,StringType,true))

scala> val data=sqltext.read.schema(struct1).format("com.databricks.spark.csv").option("header","false").option("inferSchema",true.toString).load("/tmp/20171024/game*.csv")

data: org.apache.spark.sql.DataFrame = [id: string, subid: string ... 1 more field]

scala> data.collect

res27: Array[org.apache.spark.sql.Row] = Array([9041,167,百人牛牛], [9041,174,将相和], [9041,152,百家乐], [9041,194,血战到底], [9041,4009,推到胡], [9041,4010,红中王], [9041,4098,二人麻将], [9041,4077,福建麻将], [9041,4039,血流成河], [9041,178,178])

scala> data.select("id","name").collect
res33: Array[org.apache.spark.sql.Row] = Array([9041,百人牛牛], [9041,将相和], [9041,百家乐], [9041,血战到底], [9041,推到胡], [9041,红中王], [9041,二人麻将], [9041,福建麻将], [9041,血流成河], [9041,178])

scala> data.registerTempTable("game")
warning: there was one deprecation warning; re-run with -deprecation for details

scala> sqltext.sql("select * from game").show
+----+-----+----+
|  id|subid|name|
+----+-----+----+
|9041|  167|百人牛牛|
|9041|  174| 将相和|
|9041|  152| 百家乐|
|9041|  194|血战到底|
|9041| 4009| 推到胡|
|9041| 4010| 红中王|
|9041| 4098|二人麻将|
|9041| 4077|福建麻将|
|9041| 4039|血流成河|
|9041|  178| 178|
+----+-----+----+scala> sqltext.sql("select * from game where subid>200").show
+----+-----+----+
|  id|subid|name|
+----+-----+----+
|9041| 4009| 推到胡|
|9041| 4010| 红中王|
|9041| 4098|二人麻将|
|9041| 4077|福建麻将|
|9041| 4039|血流成河|
+----+-----+----+

4.读取SequenceFile

SequenceFile 是由没有相对关系结构的键值对文件组成的常用Hadoop 格式。SequenceFile
文件有同步标记,Spark 可以用它来定位到文件中的某个点,然后再与记录的边界对
齐。这可以让Spark 使用多个节点高效地并行读取SequenceFile 文件。SequenceFile 也是
Hadoop MapReduce 作业中常用的输入输出格式,所以如果你在使用一个已有的Hadoop 系
统,数据很有可能是以SequenceFile 的格式供你使用的。SequenceFile 是由实现Hadoop 的Writable
接口的元素组成。

scala>     val rdd = sc.parallelize(List(("wwww", 3), ("tttt", 6), ("gggg", 2))) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[45] at parallelize at <console>:34

scala>     rdd.saveAsSequenceFile("/tmp/20171024/sqf.txt")

[root@host bin]# hdfs dfs -lsr /tmp/20171024/sqf*
lsr: DEPRECATED: Please use 'ls -R' instead.
-rw-r--r--   1 root supergroup          0 2017-10-30 15:37 /tmp/20171024/sqf.txt/_SUCCESS
-rw-r--r--   1 root supergroup         85 2017-10-30 15:37 /tmp/20171024/sqf.txt/part-00000
-rw-r--r--   1 root supergroup        103 2017-10-30 15:37 /tmp/20171024/sqf.txt/part-00001
-rw-r--r--   1 root supergroup        101 2017-10-30 15:37 /tmp/20171024/sqf.txt/part-00002
-rw-r--r--   1 root supergroup        103 2017-10-30 15:37 /tmp/20171024/sqf.txt/part-00003

scala> import org.apache.hadoop.io.{IntWritable, Text}
import org.apache.hadoop.io.{IntWritable, Text}

scala> val output = sc.sequenceFile("/tmp/20171024/sqf.txt", classOf[Text], classOf[IntWritable]).map{case (x, y) => (x.toString, y.toString)} output: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[1] at map at <console>:25

scala> output.collect res0: Array[(String, String)] = Array((wwww,3), (tttt,6), (gggg,2))

读取SequenceFile

scala> import org.apache.hadoop.io.{IntWritable, Text}

import org.apache.hadoop.io.{IntWritable, Text}

scala> val data = sc.sequenceFile("/spark/parinum/p*", classOf[Text], classOf[IntWritable]).map{case (x,y)=>(x.toString,y.get)}

data: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[216] at map at <console>:37

scala> data.collect

res229: Array[(String, Int)] = Array((zhangsan,100), (wangwu,250), (xiaoma,120), (laozhan,300), (tiandi,60))

保存SequenceFile

scala> numpairdd.collect

res224: Array[(String, Int)] = Array((zhangsan,100), (wangwu,250), (xiaoma,120), (laozhan,300), (tiandi,60))

scala> numpairdd.saveAsSequenceFile("/spark/parinum")

查看hdfs

[root@host conf]# hdfs dfs -ls -R /spark

SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/root/hadoop/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/root/hive/apache-hive-2.1.1/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

drwxr-xr-x   - root supergroup          0 2018-06-25 16:08 /spark/parinum

-rw-r--r--   1 root supergroup          0 2018-06-25 16:08 /spark/parinum/_SUCCESS

-rw-r--r--   1 root supergroup        125 2018-06-25 16:08 /spark/parinum/part-00000

-rw-r--r--   1 root supergroup        143 2018-06-25 16:08 /spark/parinum/part-00001

----------------------------

读取人员信息,并按得分逆序排序,如果得分相同则按年龄顺序排列

scala> val lines=sc.textFile("/tmp/person.txt")
lines: org.apache.spark.rdd.RDD[String] = /tmp/person.txt MapPartitionsRDD[5] at textFile at <console>:24

scala> lines.collect
res10: Array[String] = Array(2,zhangsan,50,866, 4,laoliu,522,30, 5,zhangsan,20,565, 6,limi,522,65, 1,xiliu,50,6998, 7,llihmj,23,565)

scala> lines.map(_.split(",")).map(arr=>person(arr(0).toLong,arr(1),arr(2).toInt,arr(3).toInt))
res11: org.apache.spark.rdd.RDD[person] = MapPartitionsRDD[7] at map at <console>:29

scala> case class person(id:Long,name:String,age:Int,fv:Int)
defined class person

scala> val userRdd=lines.map(_.split(",")).map(arr=>person(arr(0).toLong,arr(1),arr(2).toInt,arr(3).toInt))
userRdd: org.apache.spark.rdd.RDD[person] = MapPartitionsRDD[9] at map at <console>:28

scala> val pdf=userRdd.toDF()
pdf: org.apache.spark.sql.DataFrame = [id: bigint, name: string ... 2 more fields]

scala> pdf.registerTempTable("person")
warning: there was one deprecation warning; re-run with -deprecation for details

scala> import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SQLContext

scala> val sqlcon=new SQLContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details
sqlcon: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@65502709

scala> sqlcon.sql("select * from person")
res14: org.apache.spark.sql.DataFrame = [id: bigint, name: string ... 2 more fields]

scala> sqlcon.sql("select * from person").show
+---+--------+---+----+
| id| name|age| fv|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> sqlcon.sql("select * from person order by fv desc,age ").show
+---+--------+---+----+
| id| name|age| fv|
+---+--------+---+----+
| 1| xiliu| 50|6998|
| 2|zhangsan| 50| 866|
| 5|zhangsan| 20| 565|
| 7| llihmj| 23| 565|
| 6| limi|522| 65|
| 4| laoliu|522| 30|
+---+--------+---+----+

scala> sqlcon.sql("select * from person order by fv desc,age limit 4 ").show
+---+--------+---+----+
| id| name|age| fv|
+---+--------+---+----+
| 1| xiliu| 50|6998|
| 2|zhangsan| 50| 866|
| 5|zhangsan| 20| 565|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> val pdf1=sqlcon.sql("select name,age,fv from person order by fv desc,age limit 4 ")
pdf1: org.apache.spark.sql.DataFrame = [name: string, age: int ... 1 more field]

scala> pdf1.show
+--------+---+----+
|    name|age|  fv|
+--------+---+----+
|   xiliu| 50|6998|
|zhangsan| 50| 866|
|zhangsan| 20| 565|
|  llihmj| 23| 565|
+--------+---+----+

scala> pdf1.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 50|    2|
| 20|    1|
| 23|    1|
+---+-----+

scala> pdf1.write.csv("/tmp/pdf2")

查看hdfs:

[root@host tmpdata]# hdfs dfs -ls /tmp/pdf2
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/hadoop/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/hive/apache-hive-2.1.1/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Found 2 items
-rw-r--r--   1 root supergroup          0 2018-08-07 10:51 /tmp/pdf2/_SUCCESS
-rw-r--r--   1 root supergroup         60 2018-08-07 10:51 /tmp/pdf2/part-00000-f4a16495-ea53-4332-b9a7-06e38036a7ac-c000.csv
[root@host tmpdata]# hdfs dfs -cat /tmp/pdf2/par*
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/hadoop/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/hive/apache-hive-2.1.1/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
xiliu,50,6998
zhangsan,50,866
zhangsan,20,565
llihmj,23,565

scala> pdf.printSchema
root
 |-- id: long (nullable = false)
 |-- name: string (nullable = true)
 |-- age: integer (nullable = false)
 |-- fv: integer (nullable = false)

scala> pdf1.write.json("/tmp/pdf1json")

查看HDFS:

[root@host tmpdata]# hdfs dfs -ls /tmp/pdf1json
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/hadoop/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/hive/apache-hive-2.1.1/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Found 2 items
-rw-r--r--   1 root supergroup          0 2018-08-07 10:57 /tmp/pdf1json/_SUCCESS
-rw-r--r--   1 root supergroup        148 2018-08-07 10:57 /tmp/pdf1json/part-00000-f7246fb2-ad7b-49a6-bcb0-919c9102d9f2-c000.json
[root@host tmpdata]# hdfs dfs -cat /tmp/pdf1json/par*
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/hadoop/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/hive/apache-hive-2.1.1/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
{"name":"xiliu","age":50,"fv":6998}
{"name":"zhangsan","age":50,"fv":866}
{"name":"zhangsan","age":20,"fv":565}
{"name":"llihmj","age":23,"fv":565}

--------------------------

scala> pdf1.write.text("/tmp/pdf1text")
org.apache.spark.sql.AnalysisException: Text data source supports only a single column, and you have 3 columns.;
  at org.apache.spark.sql.execution.datasources.text.TextFileFormat.verifySchema(TextFileFormat.scala:46)
  at org.apache.spark.sql.execution.datasources.text.TextFileFormat.prepareWrite(TextFileFormat.scala:66)

scala> pdf1.registerTempTable("tb_pdf")

warning: there was one deprecation warning; re-run with -deprecation for details

scala> val sqlcon=new SQLContext(sc)

warning: there was one deprecation warning; re-run with -deprecation for details sqlcon: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@66000786

scala> sqlcon.sql("select * from tb_pdf")

res31: org.apache.spark.sql.DataFrame = [name: string, age: int ... 1 more field]

scala> sqlcon.sql("select * from tb_pdf").show
+--------+---+----+
|    name|age|  fv|
+--------+---+----+
|   xiliu| 50|6998|
|zhangsan| 50| 866|
|zhangsan| 20| 565|
|  llihmj| 23| 565|
+--------+---+----+

scala> sqlcon.sql("desc tb_pdf").show
+--------+---------+-------+
|col_name|data_type|comment|
+--------+---------+-------+
|    name|   string|   null|
|     age|      int|   null|
|      fv|      int|   null|
+--------+---------+-------+

-------------------------------------------------------------------------------------------------------------------

scala> pdf.cube("age").mean("fv")

res43: org.apache.spark.sql.DataFrame = [age: int, avg(fv): double]

scala> pdf.cube("age").mean("fv").show
+----+------------------+
| age|           avg(fv)|
+----+------------------+
|  23|             565.0|
|null|1514.8333333333333|
|  50|            3932.0|
| 522|              47.5|
|  20|             565.0|
+----+------------------+

scala> pdf.describe("age").show
+-------+------------------+
|summary|               age|
+-------+------------------+
|  count|                 6|
|   mean|197.83333333333334|
| stddev|251.42348073850752|
|    min|                20|
|    max|               522|
+-------+------------------+

scala> pdf.filter("age>50").show
+---+------+---+---+
| id|  name|age| fv|
+---+------+---+---+
|  4|laoliu|522| 30|
|  6|  limi|522| 65|
+---+------+---+---+

scala> pdf.select(col("age")+1,col("name")).show
+---------+--------+
|(age + 1)|    name|
+---------+--------+
|       51|zhangsan|
|      523|  laoliu|
|       21|zhangsan|
|      523|    limi|
|       51|   xiliu|
|       24|  llihmj|
+---------+--------+

scala> pdf.select("age"+1,"name").show
org.apache.spark.sql.AnalysisException: cannot resolve '`age1`' given input columns: [id, name, age, fv];;
'Project ['age1, name#6]

...........................

scala> pdf.select(col("age")+1,"name").show

<console>:37: error: overloaded method value select with alternatives:
  [U1, U2](c1: org.apache.spark.sql.TypedColumn[org.apache.spark.sql.Row,U1], c2: org.apache.spark.sql.TypedColumn[org.apache.spark.sql.Row,U2])org.apache.spark.sql.Dataset[(U1, U2)] <and>
  (col: String,cols: String*)org.apache.spark.sql.DataFrame <and>
  (cols: org.apache.spark.sql.Column*)org.apache.spark.sql.DataFrame
 cannot be applied to (org.apache.spark.sql.Column, String)
       pdf.select(col("age")+1,"name").show
           ^

scala> pdf.select("name","age").where("fv>500").show
+--------+---+
| name|age|
+--------+---+
|zhangsan| 50|
|zhangsan| 20|
| xiliu| 50|
| llihmj| 23|
+--------+---+

 DataFrame可以通过多种来源创建:结构化数据文件,hive的表,外部数据库,或者RDDs

Spark SQL如何使用
首先,利用sqlContext从外部数据源加载数据为DataFrame
然后,利用DataFrame上丰富的api进行查询、转换
最后,将结果进行展现或存储为各种外部数据形式

Spark on Hive和Hive on Spark

Spark on Hive: Hive只作为储存角色,Spark负责sql解析优化,执行。

Hive on Spark:Hive即作为存储又负责sql的解析优化,Spark负责执行。

DataFrame也是一个分布式数据容器。与RDD类似,然而DataFrame更像传统数据库的二维表格,除了数据以外,还掌握数据的结构信息,即schema同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上 看, DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。

DataFrame的底层封装的是RDD,只不过RDD的泛型是Row类型。

通过反射的方式将非json格式的RDD转换成DataFrame(不建议使用)

1.创建RDD

scala> val lines=sc.textFile("/tmp/person.txt") lines: org.apache.spark.rdd.RDD[String] = /tmp/person.txt MapPartitionsRDD[5] at textFile at <console>:24

scala> lines.collect res10: Array[String] = Array(2,zhangsan,50,866, 4,laoliu,522,30, 5,zhangsan,20,565, 6,limi,522,65, 1,xiliu,50,6998, 7,llihmj,23,565)

2.对每行使用列分割符进行分割

3.定义case class (相当于表的schema)

4.将rdd与case class关联

scala> case class person(id:Long,name:String,age:Int,fv:Int) defined class person

scala> val userRdd=lines.map(_.split(",")).map(arr=>person(arr(0).toLong,arr(1),arr(2).toInt,arr(3).toInt))
userRdd: org.apache.spark.rdd.RDD[person] = MapPartitionsRDD[9] at map at <console>:28

5.rdd转化为dataframe

scala> val pdf=userRdd.toDF()

pdf: org.apache.spark.sql.DataFrame = [id: bigint, name: string ... 2 more fields]

6.对dataframe进行处理

 动态创建Schema将非json格式的RDD转换成DataFrame(建议使用)

scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._

scala> import org.apache.spark.sql.{SQLContext,Row}
import org.apache.spark.sql.{SQLContext, Row}

scala> val lines=sc.textFile("/tmp/person.txt")
lines: org.apache.spark.rdd.RDD[String] = /tmp/person.txt MapPartitionsRDD[7] at textFile at <console>:31

scala> val rowrdd=lines.map(_.split("[,]"))
rowrdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[8] at map at <console>:33

scala> val schema=StructType(List(StructField("id",LongType,true),StructField("name",StringType,true),StructField("age",IntegerType,true),StructField("fv",IntegerType,true)))
schema: org.apache.spark.sql.types.StructType = StructType(StructField(id,LongType,true), StructField(name,StringType,true), StructField(age,IntegerType,true), StructField(fv,IntegerType,true))

scala> val rows=rowrdd.map(x=>Row(x(0).toLong,x(1).toString,x(2).toInt,x(3).toInt))
rows: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[30] at map at <console>:35

scala> val sqlcon=new SQLContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details
sqlcon: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@2bd13c

scala> val personDF=sqlcon.createDataFrame(rows,schema)
personDF: org.apache.spark.sql.DataFrame = [id: bigint, name: string ... 2 more fields]

scala> personDF.show
+---+--------+---+----+
| id| name|age| fv|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> personDF.registerTempTable("tb_person")
warning: there was one deprecation warning; re-run with -deprecation for details

scala> sqlcon.sql("select * from tb_person where age>500").show
+---+------+---+---+
| id| name|age| fv|
+---+------+---+---+
| 4|laoliu|522| 30|
| 6| limi|522| 65|
+---+------+---+---+

scala> df.write.parquet("/tmp/parquet")

[root@host tmpdata]# hdfs dfs -cat /tmp/parquet/par*
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/hadoop/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/hive/apache-hive-2.1.1/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

.........................................
 org.apache.spark.sql.parquet.row.metadata?{"type":"struct","fields":[{"name":"id","type":"string","nullable":true,"metadata":{}},{"name":"name","type":"string","nullable":true,"metadata":{}},{"name":"age","type":"string","nullable":true,"metadata":{}},{"name":"fv","type":"string","nullable":true,"metadata":{}}]}Iparquet-mr version 1.8.2 (build c6522788629e590a53eb79874b95f6c3ff11f16c)?PAR1

scala> val lines=spsession.read.parquet("/tmp/parquet/part*")
lines: org.apache.spark.sql.DataFrame = [id: string, name: string ... 2 more fields]

scala> lines.show
+---+--------+---+----+
| id|    name|age|  fv|
+---+--------+---+----+
|  2|zhangsan| 50| 866|
|  4|  laoliu|522|  30|
|  5|zhangsan| 20| 565|
|  6|    limi|522|  65|
|  1|   xiliu| 50|6998|
|  7|  llihmj| 23| 565|
+---+--------+---+----+

spark 数据读取与保存的更多相关文章

  1. Spark基础:(四)Spark 数据读取与保存

    1.文件格式 Spark对很多种文件格式的读取和保存方式都很简单. (1)文本文件 读取: 将一个文本文件读取为一个RDD时,输入的每一行都将成为RDD的一个元素. val input=sc.text ...

  2. 【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性

    本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). ...

  3. Spark学习之数据读取与保存总结(一)

    一.动机 我们已经学了很多在 Spark 中对已分发的数据执行的操作.到目前为止,所展示的示例都是从本地集合或者普通文件中进行数据读取和保存的.但有时候,数据量可能大到无法放在一台机器中,这时就需要探 ...

  4. Spark学习之数据读取与保存(4)

    Spark学习之数据读取与保存(4) 1. 文件格式 Spark对很多种文件格式的读取和保存方式都很简单. 如文本文件的非结构化的文件,如JSON的半结构化文件,如SequenceFile结构化文件. ...

  5. Spark学习笔记4:数据读取与保存

    Spark对很多种文件格式的读取和保存方式都很简单.Spark会根据文件扩展名选择对应的处理方式. Spark支持的一些常见文件格式如下: 文本文件 使用文件路径作为参数调用SparkContext中 ...

  6. Spark(十二)【SparkSql中数据读取和保存】

    一. 读取和保存说明 SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式 读取:通用和专用 保存 保存有四种模式: 默认: error : 输出目录存在就报错 append: 向 ...

  7. Spark学习之数据读取与保存总结(二)

    8.Hadoop输入输出格式 除了 Spark 封装的格式之外,也可以与任何 Hadoop 支持的格式交互.Spark 支持新旧两套Hadoop 文件 API,提供了很大的灵活性. 要使用新版的 Ha ...

  8. 【Spark机器学习速成宝典】基础篇03数据读取与保存(Python版)

    目录 保存为文本文件:saveAsTextFile 保存为json:saveAsTextFile 保存为SequenceFile:saveAsSequenceFile 读取hive 保存为文本文件:s ...

  9. matlab各格式数据读取与保存函数

    数据处理及matlab的初学者,可能最一开始接触的就是数据的读取与保存: %matlab数据保存与读入 function datepro clear all; %产生随机数据 mat = rand(, ...

随机推荐

  1. sql 数据类型转换

    1.convert(float,endtimepart)——conver(数据类型,字段名称) 2.cast(endtimepart as float)——cast(字段名称 as 数据类型)

  2. ALGO-118_蓝桥杯_算法训练_连续正整数的和

    问题描述 78这个数可以表示为连续正整数的和,++,+++,++. 输入一个正整数 n(<=) 输出 m 行(n有m种表示法),每行是两个正整数a,b,表示a+(a+)+...+b=n. 对于多 ...

  3. python列表中的值转换为字符串,及列表里的所有值拼接成一个字符串 的方法

    后记: ls3='%'.join(ls2) 会把%加入拼接成的字符里面,同理,加入其它字符也一样,''空就是什么都不加,如上图 最后输出 1%我%22

  4. Scala中的柯里化

    一.初识Currying柯里化   柯里化(Currying)技术 Christopher Strachey 以逻辑学家 Haskell Curry 命名的(尽管它是 Moses Schnfinkel ...

  5. jquery add() 和js add()

    HTML DOM add() 方法 HTML DOM Select 对象 定义和用法 add() 方法用于向 <select> 添加一个 <option> 元素. 语法 sel ...

  6. 编码(encode和decode)

    一. 编码 1. ASCII编码 ASCII是最早的计算机编码,包含了英文字母(大小写),数字,标点等特殊符号,一共128个码位,最多只能用8位来表示(一个字节),ASCLL码最多256个位置,无法提 ...

  7. 使用LiteOrm删除数据对象失败的坑

    使用 LiteOrm.newSingleInstance(BaseApplication.getInstance(), Constant.DB_NAME); 在不同进程中创建了两次对象,在保存和删除的 ...

  8. go语言功能代码

    一.数据类型转换 package main import ( "fmt" "strconv" ) func main() { //int到string str ...

  9. Linux安装MySQL8.0.12之二进制安装

    运行环境:centos 7.5 + mysql8.0.12 1.下载官方打包好的二进制安装包: wget https://cdn.mysql.com//Downloads/MySQL-8.0/mysq ...

  10. Ext.NET Ext.JS 常用代码片段摘录

    引言 最近写代码突然有"一把梭"的感觉, 不管三七二十一先弄上再说. 换别人的说法, 这应该是属于"做项目"风格法吧. 至于知识体系, 可以参考官方或者更权威的 ...