reproduced from: http://www.cnblogs.com/muchen/p/6306747.html

前言

本文将介绍 CUDA 编程的基本模式,所有 CUDA 程序都基于此模式编写,即使是调用库,库的底层也是这个模式实现的。

模式描述

  1. 定义需要在 device 端执行的核函数。( 函数声明前加 _golbal_ 关键字 )

2. 在显存中为待运算的数据以及需要存放结果的变量开辟显存空间。( cudaMalloc 函数实现 )

3. 将待运算的数据传输进显存。( cudaMemcpy,cublasSetVector 等函数实现 )

4. 调用 device 端函数,同时要将需要为 device 端函数创建的块数线程数等参数传递进 <<<>>>。( 注: <<<>>>下方编译器可能显示语法错误,不用管 )

5. 从显存中获取结果变量。( cudaMemcpy,cublasGetVector 等函数实现 )

6. 释放申请的显存空间。( cudaFree 实现 )

PS:每个 device 端函数在被调用时都能获取到调用它的具体块号,线程号,从而实现并行( 获取方法请参考下面的编程规范说明以及代码示例 )。

编程规范说明

在 CUDA 标准编程模式中,增加了一些编程规范,在这里简要说明:

  函数声明关键字:

    1. __device__

    表明此函数只能在 GPU 中被调用,在 GPU 中执行。这类函数只能被 __global__ 类型函数或 __device__ 类型函数调用。

    2. __global__

    表明此函数在 CPU 上调用,在 GPU 中执行。这也是以后会常提到的 "内核函数",有时为了便于理解也称 "device" 端函数。

    3. __host__

    表明此函数在 CPU 上调用和执行,这也是默认情况。
  内核函数配置运算符 <<<>>> - 这个运算符在调用内核函数的时候使用,一般情况下传递进三个参数:

    1. 块数

    2. 线程数

    3. 共享内存大小 (此参数默认为0 )

  内核函数中的几个系统变量 - 这几个变量可以在内核函数中使用,从而控制块与线程的工作:

    1. gridDim:块数

    2. blockDim:块中线程数

    3. blockIdx:块编号 (0 - gridDim-1)

    4. threadIdx:线程编号 (0 - blockDim-1)

  知道这些已经足够编写 CUDA 程序了,更多的编程说明将在以后的文章中介绍。

代码示例

该程序采用 CUDA 并行化思想来对数组进行求和:

 // 相关 CUDA 库
#include "cuda_runtime.h"
#include "cuda.h"
#include "device_launch_parameters.h" #include <iostream>
#include <cstdlib> using namespace std; const int N = ; // 块数
const int BLOCK_data = ;
// 各块中的线程数
const int THREAD_data = ; // CUDA初始化函数
bool InitCUDA()
{
int deviceCount; // 获取显示设备数
cudaGetDeviceCount (&deviceCount); if (deviceCount == )
{
cout << "找不到设备" << endl;
return EXIT_FAILURE;
} int i;
for (i=; i<deviceCount; i++)
{
cudaDeviceProp prop;
if (cudaGetDeviceProperties(&prop,i)==cudaSuccess) // 获取设备属性
{
if (prop.major>=) //cuda计算能力
{
break;
}
}
} if (i==deviceCount)
{
cout << "找不到支持 CUDA 计算的设备" << endl;
return EXIT_FAILURE;
} cudaSetDevice(i); // 选定使用的显示设备 return EXIT_SUCCESS;
} // 此函数在主机端调用,设备端执行。
__global__
static void Sum (int *data,int *result)
{
// 取得线程号
const int tid = threadIdx.x;
// 获得块号
const int bid = blockIdx.x; int sum = ; // 有点像网格计算的思路
for (int i=bid*THREAD_data+tid; i<N; i+=BLOCK_data*THREAD_data)
{
sum += data[i];
} // result 数组存放各个线程的计算结果
result[bid*THREAD_data+tid] = sum;
} int main ()
{
// 初始化 CUDA 编译环境
if (InitCUDA()) {
return EXIT_FAILURE;
}
cout << "成功建立 CUDA 计算环境" << endl << endl; // 建立,初始化,打印测试数组
int *data = new int [N];
cout << "测试矩阵: " << endl;
for (int i=; i<N; i++)
{
data[i] = rand()%;
cout << data[i] << " ";
if ((i+)% == ) cout << endl;
}
cout << endl; int *gpudata, *result; // 在显存中为计算对象开辟空间
cudaMalloc ((void**)&gpudata, sizeof(int)*N);
// 在显存中为结果对象开辟空间
cudaMalloc ((void**)&result, sizeof(int)*BLOCK_data*THREAD_data); // 将数组数据传输进显存
cudaMemcpy (gpudata, data, sizeof(int)*N, cudaMemcpyHostToDevice);
// 调用 kernel 函数 - 此函数可以根据显存地址以及自身的块号,线程号处理数据。
Sum<<<BLOCK_data,THREAD_data,>>> (gpudata,result); // 在内存中为计算对象开辟空间
int *sumArray = new int[THREAD_data*BLOCK_data];
// 从显存获取处理的结果
cudaMemcpy (sumArray, result, sizeof(int)*THREAD_data*BLOCK_data, cudaMemcpyDeviceToHost); // 释放显存
cudaFree (gpudata);
cudaFree (result); // 计算 GPU 每个线程计算出来和的总和
int final_sum=;
for (int i=; i<THREAD_data*BLOCK_data; i++)
{
final_sum += sumArray[i];
} cout << "GPU 求和结果为: " << final_sum << endl; // 使用 CPU 对矩阵进行求和并将结果对照
final_sum = ;
for (int i=; i<N; i++)
{
final_sum += data[i];
}
cout << "CPU 求和结果为: " << final_sum << endl; getchar(); return ;
}

小结

  1. 掌握本节知识的关键除了要掌握各个API,还要深刻理解内核函数中的块及线程变量的控制,或者说施展 :)

2. 一定要明确传递进 API 的是参数本身,还是参数的地址,这很关键。

CUDA 编程的基本模式的更多相关文章

  1. 不同版本CUDA编程的问题

    1 无法装上CUDA的toolkit 卸载所有的NVIDIA相关的app,包括NVIDIA的显卡驱动,然后重装. 2之前的文件打不开,one or more projects in the solut ...

  2. cuda编程基础

    转自: http://blog.csdn.net/augusdi/article/details/12529247 CUDA编程模型 CUDA编程模型将CPU作为主机,GPU作为协处理器(co-pro ...

  3. CUDA学习笔记(一)——CUDA编程模型

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm56.html CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码:另一部分在d ...

  4. CUDA编程

    目录: 1.什么是CUDA 2.为什么要用到CUDA 3.CUDA环境搭建 4.第一个CUDA程序 5. CUDA编程 5.1. 基本概念 5.2. 线程层次结构 5.3. 存储器层次结构 5.4. ...

  5. CUDA编程-(1)Tesla服务器Kepler架构和万年的HelloWorld

    结合CUDA范例精解以及CUDA并行编程.由于正在学习CUDA,CUDA用的比较多,因此翻译一些个人认为重点的章节和句子,作为学习,程序将通过NVIDIA K40服务器得出结果.如果想通过本书进行CU ...

  6. cuda编程(一)

    环境安装和例程运行 显卡主要有两家,ATI.NVIDIA,简称A卡和N卡.随着GPU计算能力的上升,采用GPU并行计算来加速的应用越来越多. Nvidia创立人之一,黄仁勋(Jen-Hsun Huan ...

  7. CUDA编程入门,Dim3变量

    dim3是NVIDIA的CUDA编程中一种自定义的整型向量类型,基于用于指定维度的uint3. 例如:dim3 grid(num1,num2,num3): dim3类型最终设置的是一个三维向量,三维参 ...

  8. CUDA编程(六)进一步并行

    CUDA编程(六) 进一步并行 在之前我们使用Thread完毕了简单的并行加速,尽管我们的程序运行速度有了50甚至上百倍的提升,可是依据内存带宽来评估的话我们的程序还远远不够.在上一篇博客中给大家介绍 ...

  9. CUDA编程模型之内存管理

    CUDA编程模型假设系统是由一个主机和一个设备组成的,而且各自拥有独立的内存. 主机:CPU及其内存(主机内存),主机内存中的变量名以h_为前缀,主机代码按照ANSI C标准进行编写 设备:GPU及其 ...

随机推荐

  1. 来分析一个UVC的摄像头的枚举信息

    使用到工具USBlyzer导出数据,但是会发现一些还有部分解析未完全.我们将借助UVCView.x86(https://files.cnblogs.com/files/libra13179/77772 ...

  2. Oracle 表复杂查询之多表合并查询

    转自:https://www.cnblogs.com/GreenLeaves/p/6635887.html 本文使用到的是oracle数据库scott方案所带的表,scott是oracle数据库自带的 ...

  3. IIS asp 401.1错误

    asp程序使用非匿名帐户运行时因用户名前带了计算机名会导致出现401.1错误,只要直接输入用户名即可,不要带计算机名.

  4. redis开启外网访问

    redis默认只允许本地访问,要使redis可以远程访问可以修改redis.conf   打开redis.conf文件在NETWORK部分有说明   ######################### ...

  5. 08_组件三大属性(2)_props

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. 07_组件三大属性(1)_state

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. FireDac 组件说明二

    FDUpdateSQL 生成添加,删除,修改SQL语句 TFDMetaInfoQuery 查询数据源信息 TFDEventAlerter 负责处理数据库事件通知 使用TFDEventAlerter类来 ...

  8. es6初级之解构----之二 及 键值反转实现

    1.解构: 不定参数,扩展表达式 let arr = [100, 201, 303, 911]; let [one, ...others] = arr; console.log(others.leng ...

  9. linux下svn不能连接上windows服务器:SSL handshake failed: SSL error

    在linux服务器下载https链接的svn源码时出现:SSL handshake failed: SSL error: Key usage violation in certificate has ...

  10. tomcat8 web工程启动,登陆页面失败问题解决

    编辑该文件context.xml 增加以下内容 <CookieProcessor className="org.apache.tomcat.util.http.LegacyCookie ...