M斐波那契数列

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1672    Accepted Submission(s): 482

Problem Description

M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?

 

Input

输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
 

Output

对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
 

Sample Input

0 1 0
6 10 2
 

Sample Output

0
60
 
Source
 

题意:不解释,中文题。

思路:费马小定理+矩阵快速幂

 

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549

转载请注明出处:寻找&星空の孩子

#include<cstring>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL __int64
const __int64 mod=; struct matrix
{
LL mat[][];
};
matrix multiply(matrix a,matrix b)
{
matrix c;
memset(c.mat,,sizeof(c.mat));
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
if(a.mat[i][j]==)continue;
for(int k=;k<;k++)
{
if(b.mat[j][k]==)continue;
c.mat[i][k]=(c.mat[i][k]+a.mat[i][j]*b.mat[j][k])%(mod-);//加法不能简写成..+=...%..
}
}
}
return c;
}
matrix matrixquicklymod(matrix x,LL m)
{
matrix res;
// memset(res.mat,0,sizeof(res.mat));
for(int i=;i<;i++)
for(int j=;j<;j++)
res.mat[i][j]=(i==j);
while(m)
{
if(m&) res=multiply(res,x);
m>>=;
x=multiply(x,x);
}
return res;
} LL qmod(LL x, LL y)
{
LL z=;
while(y)
{
if(y&) z=(z*x)%mod;
y>>=;
x=(x*x)%mod;
}
return z;
}
int main()
{
LL a,b,n,ma,mb;
while(scanf("%I64d%I64d%I64d",&a,&b,&n)!=EOF)
{
matrix ans;
ma=mb=;//幂
ans.mat[][]=;
ans.mat[][]=;
ans.mat[][]=;
ans.mat[][]=;
if(n==)
printf("%I64d\n",a%mod);
else if(n==)
printf("%I64d\n",b%mod);
else if(n==)
printf("%I64d\n",((a%mod)*(b%mod))%mod);
else
{
ans=matrixquicklymod(ans,n-);
mb=ans.mat[][]+ans.mat[][];
ma=ans.mat[][]+ans.mat[][];
ma=ma%(mod-);
mb=mb%(mod-);
a=qmod(a,ma);
b=qmod(b,mb);
printf("%I64d\n",((a%mod)*(b%mod))%mod);
}
}
return ;
}

慢慢提升吧。。。。。少年!

M斐波那契数列(矩阵快速幂+费马小定理)的更多相关文章

  1. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  2. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

  4. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

  5. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  6. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  7. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  8. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  9. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

随机推荐

  1. 【BZOJ1053】 反素数ant

    BZOJ1053 反素数ant 我们先考虑唯一分解定理求出约数个数: \(x=a_1^{p_1}a_2^{p_2}a_3^{p_3}...a_k^{p_k}\) 然后\(num=\Pi_{i=1}^k ...

  2. SQL注入之PHP-MySQL实现手工注入-字符型

    SQL注入,就是通过把SQL命令插入到Web表单提交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.具体来说,它是利用现有应用程序,将(恶意的)SQL命令注入到后台数据库引擎 ...

  3. Select count(*)、Count(1)、Count(0)的区别和执行效率比较

    记得很早以前就有人跟我说过,在使用count的时候要用count(1)而不要用count(*),因为使用count(*)的时候会对所有的列进行扫描,相比而言count(1)不用扫描所有列,所以coun ...

  4. 链表(上):如何实现LRU缓存淘汰算法?

    一.什么是链表 和数组一样,链表也是一种线性表. 从内存结构来看,链表的内存结构是不连续的内存空间,是将一组零散的内存块串联起来,从而进行数据存储的数据结构. 链表中的每一个内存块被称为节点Node. ...

  5. Docker三剑客之Docker Compose

    一.什么是Docker Compose Compose 项目是Docker官方的开源项目,负责实现Docker容器集群的快速编排,开源代码在https://github.com/docker/comp ...

  6. vue教程3-01 路由、组件、bower包管理器使用

    vue教程3-01 路由.组件.包管理器 以下操作前提是 已经安装好node.js npm bower-> (前端)包管理器 下载: npm install bower -g 验证: bower ...

  7. KVM的VPS主机在Centos6.x下修改系统时间

    显示系统时间 # date "+%Y-%m-%d %H:%M:%S" 修改系统时区 # cp /usr/share/zoneinfo/Asia/Shanghai /etc/loca ...

  8. storm_分组策略

      注意1:原始的案例 spout 和bolt都是1个并发  所以文件中30条日志 从spout发出以后 bolt接受到30条

  9. kafka-java客户端连接

    使用java客户端, kafkaproducer, kafkaconsumer进行kafka的连接 注: 0.10 版本之后, 连接kafka只需要brokerip即可, 不需要zookeeper的信 ...

  10. DDA, Bresenham line's algorithm and Voxel Traversal used in the Grid-Accelerator in PBRT

        - DDA(Digital Differential Analyzer, 数值微分法) -    计算机图形学中,经常会遇到一些计算机中”经典“的问题.例如,如何利用计算机”离散“的特质,模拟 ...