吴裕雄 python神经网络 水果图片识别(5)
#-*- coding:utf-8 -*-
### required libaraied
import os
import matplotlib.image as img
import matplotlib.pyplot as plt
import skimage
from skimage import color, data, transform
from scipy import ndimage
import numpy as np
import tensorflow as tf
from IPython.core.pylabtools import figsize
from natsort import natsorted
import time
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.optimizers import Adadelta
from keras import applications
import random
%matplotlib inline
#设置文件目录
Training = r'C:\Users\lcb\fruits-360\Training'
Test = r'C:\Users\lcb\fruits-360\Test'
#获取每类水果中的第五张图像
def load_print_img(root) :
print_img = []
print_label = []
for i in range(len(os.listdir(root))) : #遍历水果种类目录
child1 = os.listdir(root)[i]
child2 = os.listdir(os.path.join(root, child1))
child2 = natsorted(child2) #对第二层目录进行自然数排序,os.listder默认为str排序
path = os.path.join(root, child1, child2[4]) #取出每类的第五张图像
if(path.endswith('.jpg')) :
print_img.append(skimage.data.imread(path))
print_label.append(child1)
return print_img, print_label
#打印每类水果的第五张图像
def print_fruit(print_img, print_label, size) :
plt.figure(figsize(size, size))
for i in range(len(print_img)) :
plt.subplot(11, 7,(i+1)) #图像输出格式为11行7列
plt.imshow(print_img[i]) #打印图像
plt.title(format(print_label[i])) #打印水果种类
plt.axis('off')
plt.show()
#打印水果
print_fruit(load_print_img(Training)[0], load_print_img(Training)[1], 15)
#随机获取水果种类
def get_random_fruits(root, n_classes) :
fruits = []
for i in range(len(os.listdir(root))) : #创建一个1到水果种类总数的list
fruits.append(i)
random_fruits = random.sample(fruits, n_classes) #随机获取n_classes个随机不重复的水果种类
return random_fruits
#获取随机抽取的10类水果的图像
def load(root, random_fruits) :
image_data = [] #存放图像
image_label = [] #存放标签
num_label = [] #存放图像标签码
for i in range(len(random_fruits)) : #遍历水果类型
child1 = os.listdir(root)[i] #第一层子目录(水果种类)
child2 = os.listdir(os.path.join(root, child1)) #第二层子目录(水果图像)
child2 = natsorted(child2) #对第二层目录进行自然数排序,os.listder默认为str排序
for j in range(len(child2)) : #遍历水果图像
path = os.path.join(root, child1, child2[j]) #结合第一二层子目录
if(path.endswith('.jpg')) : #只读取'.jpg'文件(文件后缀是否为'.jpg')
image_data.append(skimage.data.imread(path)) #把文件读取为图像存入image_data
image_label.append(child1) #储存第一层子目录文件名(即水果名)
num_label.append(i) #把第一层子目录文件名的下标作为水果类型的编码
num_label = keras.utils.to_categorical(num_label, n_classes) #把水果类型编码转换为one_hot编码
#print("图片数:{0}, 标签数:{1}".format(len(image_data), len(os.listdir(root))) #输出图片和标签数
return image_data, image_label, num_label
#裁剪图像
def crop(image_data) :
crop_data = []
for i in image_data :
I_crop = skimage.transform.resize(i, (32, 32)) #把图像转换成32*32的格式
crop_data.append(I_crop) #把转换后的图像放入Icrop_data
return crop_data
def fruits_type(random_fruits) :
print('fruits_type:')
for i in random_fruits :
print( os.listdir(Training)[i])
n_classes = 10 #定义水果种类数
#batch_size = 256 #定义块的大小
#batch_num = int(np.array(crop_img).shape[0]/batch_size) #计算取块的次数
x = tf.placeholder(tf.float32,[None, 32, 32, 3]) #申请四维占位符,数据类型为float32
y = tf.placeholder(tf.float32,[None, n_classes]) #申请二维占位符,数据累型为float32
keep_prob = tf.placeholder(tf.float32) #申请一维占位符,数据类型为float32
#epochs=2 #训练次数
dropout=0.75 #每个神经元保留的概率
k_size = 3 #卷积核大小
Weights = {
"conv_w1" : tf.Variable(tf.random_normal([k_size, k_size, 3, 64]), name = 'conv_w1'), \
"conv_w2" : tf.Variable(tf.random_normal([k_size, k_size, 64, 128]), name = 'conv_w2'), \
#"conv_w3" : tf.Variable(tf.random_normal([k_size, k_size, 256, 512]), name = 'conv_w3'), \
"den_w1" : tf.Variable(tf.random_normal([int(32*32/4/4*128), 1024]), name = 'dev_w1'), \
"den_w2" : tf.Variable(tf.random_normal([1024, 512]), name = 'den_w2'), \
"den_w3" : tf.Variable(tf.random_normal([512, n_classes]), name = 'den_w3')
}
bias = {
"conv_b1" : tf.Variable(tf.random_normal([64]), name = 'conv_b1'), \
"conv_b2" : tf.Variable(tf.random_normal([128]), name = 'conv_b2'), \
#"conv_b3" : tf.Variable(tf.random_normal([512]), name = 'conv_b3'), \
"den_b1" : tf.Variable(tf.random_normal([1024]), name = 'den_b1'), \
"den_b2" : tf.Variable(tf.random_normal([512]), name = 'den_b2'), \
"den_b3" : tf.Variable(tf.random_normal([n_classes]), name = 'den_b3')
}
def conv2d(x,W,b,stride=1):
x=tf.nn.conv2d(x,W,strides=[1,stride,stride,1],padding="SAME")
x=tf.nn.bias_add(x,b)
return tf.nn.relu(x)
def maxpool2d(x,stride=2):
return tf.nn.max_pool(x,ksize=[1,stride,stride,1],strides=[1,stride,stride,1],padding="SAME")
def conv_net(inputs, W, b, dropout) :
## convolution layer 1
## 输入32*32*3的数据,输出16*16*64的数据
conv1 = conv2d(x, W["conv_w1"], b["conv_b1"])
conv1 = maxpool2d(conv1, 2)
tf.summary.histogram('ConvLayer1/Weights', W["conv_w1"])
tf.summary.histogram('ConvLayer1/bias', b["conv_b1"])
## convolution layer2
## 输入16*16*64的数据,输出8*8*128的数据
conv2 = conv2d(conv1, W["conv_w2"], b["conv_b2"])
conv2 = maxpool2d(conv2, 2)
tf.summary.histogram('ConvLayer2/Weights', W["conv_w2"])
tf.summary.histogram('ConvLayer2/bias', b["conv_b2"])
## convolution layer3
#conv3 = conv2d(conv2, W["conv_w3"], b["conv_b3"])
#conv3 = maxpool2d(conv3, 2)
#tf.summary.histogram('ConvLayer3/Weights', W["conv_w3"])
#tf.summary.histogram('ConvLayer3/bias', b["conv_b3"])
## flatten
## 把数据拉伸为长度为8*8*128的一维数据
flatten = tf.reshape(conv2,[-1, W["den_w1"].get_shape().as_list()[0]])
## dense layer1
## 输入8192*1的数据,输出1024*1的数据
den1 = tf.add(tf.matmul(flatten, W["den_w1"]), b["den_b1"])
den1 = tf.nn.relu(den1)
den1 = tf.nn.dropout(den1, dropout)
tf.summary.histogram('DenLayer1/Weights', W["den_w1"])
tf.summary.histogram('DenLayer1/bias', b["den_b1"])
## dense layer2
## 1024*1的数据,输出512*1的数据
den2 = tf.add(tf.matmul(den1, W["den_w2"]), b["den_b2"])
den2 = tf.nn.relu(den2)
den2 = tf.nn.dropout(den2, dropout)
tf.summary.histogram('DenLayer2/Weights', W["den_w2"])
tf.summary.histogram('DenLayer2/bias', b["den_b2"])
## out
## 512*1的数据,输出n_classes*1的数据
out = tf.add(tf.matmul(den2, W["den_w3"]), b["den_b3"])
tf.summary.histogram('DenLayer3/Weights', W["den_w3"])
tf.summary.histogram('DenLayer3/bias', b["den_b3"])
return out
def get_data(inputs, batch_size, times):
i = times * batch_size
data = inputs[i : (times+1)*batch_size]
return data
def train_and_test(train_x, train_y, test_x, test_y, epochs, batch_size, times = 1) :
# 初始化全局变量
init=tf.global_variables_initializer()
start_time = time.time()
with tf.Session() as sess:
sess.run(init)
# 把需要可视化的参数写入可视化文件
writer=tf.summary.FileWriter('C:/Users\lcb/fruits-360/tensorboard/Fruit_graph' + str(times), sess.graph)
for i in range(epochs):
batch_num = int(np.array(crop_img).shape[0]/batch_size)
sum_cost = 0
sum_acc = 0
for j in range(batch_num):
batch_x = get_data(train_x, batch_size, j)
batch_y = get_data(train_y, batch_size, j)
sess.run(optimizer, feed_dict={x:batch_x,y:batch_y,keep_prob:0.75})
loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_x,y:batch_y,keep_prob: 1.})
sum_cost += loss
sum_acc += acc
#if((i+1) >= 10 and ((i+1)%10 == 0)) :
#print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))
result=sess.run(merged,feed_dict={x:batch_x, y:batch_y, keep_prob:0.75})
writer.add_summary(result, i)
arg_cost = sum_cost/batch_num
arg_acc = sum_acc/batch_num
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(arg_cost),"Training accuracy","{:.5f}".format(arg_acc))
end_time = time.time()
print('Optimization Completed')
print('Testing Accuracy:',sess.run(accuracy,feed_dict={x:test_x, y:test_y,keep_prob: 1}))
print('Total processing time:',end_time - start_time)
pred=conv_net(x,Weights,bias,keep_prob)
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
tf.summary.histogram('loss', cost)
optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
merged=tf.summary.merge_all()
for i in range(10) :
random_fruits = get_random_fruits(Training, n_classes)
img_data, img_label, num_label = load(Training, random_fruits)
crop_img = crop(img_data)
test_data, test_label, test_num_label = load(Test, random_fruits)
crop_test = crop(test_data)
print("TIMES"+str(i+1))
fruits_type(random_fruits)
print("\n")
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, (i+1))
print("\n\n\n")
vgg_model=applications.VGG19(include_top=False,weights='imagenet')
vgg_model.summary()
bottleneck_feature_train=vgg_model.predict(np.array(crop_img),verbose=1)
bottleneck_feature_test=vgg_model.predict(np.array(crop_test),verbose=1)
print(bottleneck_feature_train.shape,bottleneck_feature_test.shape)
my_model=Sequential()
my_model.add(Flatten())
my_model.add(Dense(512,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(256,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(n_classes,activation='softmax'))
my_model.compile(optimizer=Adadelta(),loss="categorical_crossentropy",\
metrics=['accuracy'])
my_model.fit(bottleneck_feature_train,num_label,batch_size=128,epochs=50,verbose=1)
evaluation=my_model.evaluate(bottleneck_feature_test,test_num_label,batch_size=128,verbose=0)
print("loss:",evaluation[0],"accuracy:",evaluation[1])
random_fruits = get_random_fruits(Training, n_classes)
img_data, img_label, num_label = load(Training, random_fruits)
crop_img = crop(img_data)
test_data, test_label, test_num_label = load(Test, random_fruits)
crop_test = crop(test_data)
fruits_type(random_fruits)
optimizer=tf.train.AdadeltaOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Adadelta')
optimizer=tf.train.AdagradOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Adagrad')
optimizer=tf.train.FtrlOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Ftrl')
吴裕雄 python神经网络 水果图片识别(5)的更多相关文章
- 吴裕雄 python神经网络 水果图片识别(4)
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...
- 吴裕雄 python神经网络 水果图片识别(3)
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...
- 吴裕雄 python神经网络 水果图片识别(2)
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...
- 吴裕雄 python神经网络 水果图片识别(1)
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣识别2
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow图片预处理
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...
随机推荐
- 如何在ubuntu系统里面用新加装的硬盘对系统进行扩容
我这里是用256G的固态硬盘安装了系统,想通过扩展1T的机械硬盘存储数据的,现在我们需要的就是把这个1T的硬盘进行扩容进去 使用df -h和sudo fdisk -l命令查看磁盘情况 切换到root用 ...
- TP微信扫码支付
1.官网下载php扫码支付adk,放在项目引入第三方类库中 2.配置config中相关参数 注意:可能会遇到问题 微信支付错误问题的解决:curl出错,错误码:60 Fatal error: Unca ...
- solr系统query检索词特殊字符的处理
solr是基于 lucence开发的应用,如果query中带有非法字符串,结果很可能是检索出所有内容或者直接报错,所以你对用户的输入必须要先做处理.输入星号,能够检索出所有内容:输入加号,则会报错. ...
- Echarts动态加载饼状图的实例
一.引入echarts.js文件(下载页:http://echarts.baidu.com/download.html) 二.HTML代码: <div style="width: 10 ...
- python 函数传递可变参数的用法
可变参数 在Python函数中,还可以定义可变参数.顾名思义,可变参数就是传入的参数个数是可变的,可以是1个.2个到任意个,还可以是0个. 我们以数学题为例子,给定一组数字a,b,c……,请计算a2 ...
- angularjs探秘<五> 举足轻重的scope
scope在angular中的作用可谓举足轻重,不理解scope就不会angular: scope是应用在 HTML (view) 和 JavaScript (controller)之间的纽带. sc ...
- MySQL C API(23)
C API 提供了对 MySQL c/s 模型的底层访问.C API 代码在 mysqlclient 库中实现.可以从该库中引用到的变量及含义: 环境变量 含义 MYSQL_UNIX_PORT 本地连 ...
- 0基础学习MySQL 之常用数据类型
原文地址 =========================================== 数据类型是定义列中可以存储什么数据以及该数据实际怎么存储的基本规则. Mysql的常用数据类型主要有: ...
- py库: Selenium (自动化测试)
http://blog.csdn.net/liujingqiu/article/details/50458553 http://www.cnblogs.com/zhaof/p/6953241.html ...
- 代码:jquery小效果—— 吸顶
吸顶: 可以防止滚屏过程中,代码被多次调用 <script src="http://cdn.bootcss.com/jquery/1.11.1/jquery.min.js"& ...