2019.03.09 codeforces833B. The Bakery(线段树优化dp)
传送门
线段树优化dpdpdp入门题。
要求把nnn个数分成kkk段,每段价值为里面不相同的数的个数,求所有段的价值之和最大值。n≤35000,k≤50n\le35000,k\le50n≤35000,k≤50
先考虑直接暴力dpdpdp,fj,if_{j,i}fj,i表示把前iii个分成jjj组的最优值。
显然fj,i=maxj−1≤k≤i−1{fj−1,k+W(k+1,i)}f_{j,i}=\max\limits_{j-1\le k\le i-1}\{f_{j-1,k}+W(k+1,i)\}fj,i=j−1≤k≤i−1max{fj−1,k+W(k+1,i)}
于是就有了一个O(n2k)O(n^2k)O(n2k)的做法。
现在考虑优化求fj,i+W(k+1,i)f_{j,i}+W(k+1,i)fj,i+W(k+1,i)的做法。
我们考虑增量法,即枚举当前层的iii的时候考虑coloricolor_icolori对之前所有的fff的贡献。
对于这种相同颜色只考虑一次贡献的题有这么一个固定的套路:我们记当前颜色上一次出现的位置为pre,则这个颜色会对[pre+1,i]或者[pre,i-1]这一段产生贡献。
对于这道题可以动态维护fj−1,k+W(k+1,j)f_{j-1,k}+W(k+1,j)fj−1,k+W(k+1,j)这个值,因此我们最开始将fj−1,if_{j-1,i}fj−1,i全部放到一棵线段树上面作为初始值,走到位置iii时把[prei,i−1][pre_i,i-1][prei,i−1]维护的值全部加111即可。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
const int N=35005,K=55;
int tmp=0,a[N],f[2][N],n,k,pre[N],mp[N];
namespace SGT{
#define lc (p<<1)
#define rc (p<<1|1)
#define mid (l+r>>1)
int mx[N<<2],add[N<<2];
inline void pushup(int p){mx[p]=max(mx[lc],mx[rc]);}
inline void pushnow(int p,int v){mx[p]+=v,add[p]+=v;}
inline void pushdown(int p){if(add[p])pushnow(lc,add[p]),pushnow(rc,add[p]),add[p]=0;}
inline void build(int p,int l,int r){
add[p]=0;
if(l==r){mx[p]=f[tmp^1][l];return;}
build(lc,l,mid),build(rc,mid+1,r),pushup(p);
}
inline void update(int p,int l,int r,int ql,int qr,int v){
if(ql>qr)return;
if(ql<=l&&r<=qr)return pushnow(p,v);
pushdown(p);
if(qr<=mid)update(lc,l,mid,ql,qr,v);
else if(ql>mid)update(rc,mid+1,r,ql,qr,v);
else update(lc,l,mid,ql,mid,v),update(rc,mid+1,r,mid+1,qr,v);
pushup(p);
}
inline int query(int p,int l,int r,int ql,int qr){
if(ql>qr)return -0x3f3f3f3f;
if(ql<=l&&r<=qr)return mx[p];
pushdown(p);
if(qr<=mid)return query(lc,l,mid,ql,qr);
if(ql>mid)return query(rc,mid+1,r,ql,qr);
return max(query(lc,l,mid,ql,mid),query(rc,mid+1,r,mid+1,qr));
}
#undef lc
#undef rc
#undef mid
}
int main(){
n=read(),k=read();
memset(mp,-1,sizeof(mp));
for(ri i=1;i<=n;++i)a[i]=read(),pre[i]=mp[a[i]],mp[a[i]]=i;
memset(f[tmp],-0x3f,sizeof(f[tmp]));
f[tmp][0]=0;
for(ri tt=1;tt<=k;++tt){
tmp^=1;
memset(f[tmp],-0x3f,sizeof(f[tmp]));
SGT::build(1,0,n);
for(ri i=1;i<=n;++i){
SGT::update(1,0,n,pre[i],i-1,1);
f[tmp][i]=SGT::query(1,0,n,tt-1,i-1);
}
}
cout<<f[tmp][n];
return 0;
}
2019.03.09 codeforces833B. The Bakery(线段树优化dp)的更多相关文章
- CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
- POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...
随机推荐
- 记一次laravel-jwt修改黑名单所用redis数据库
场景是这样的,我用tymon/jwt包做鉴权.jwt是自编码token,过期前想要强制失效只能将其加入黑名单中,黑名单一般用缓存存储. 但会有一个问题,若某种意外情况不小心执行了php aritsan ...
- K8s快速入门
在k8s中所有的内容都抽象为资源,资源实例化之后,叫做对象.一般使用yaml格式的文件来创建符合我们预期期望的pod,这样的yaml文件我们一般称为资源清单 资源清单的格式: apiVersion: ...
- gson格式化参数 对象转Map
前台传json到后台接收: String params = request.getParameters("paramtes"); Map<String, Map<St ...
- leetcode268缺失数字
int missingNumber(int* nums, int numsSize) { ) /; ;i<numsSize;i++){ sum = sum - nums[i]; } return ...
- oralce的function处理考勤时间节点以及计算工作时间
例如: 上班时间为 8:30 到17:30,加班则到21:00:午休时间为1小时,(12:00-13:00): 晚间休息时间为半小时 (17:30-18:00),计算一批考勤数据的上班时间. 思路: ...
- 并发编程 process 模块的方法及运用 僵尸与孤儿
进程创建的两种方法 Process() 继承Process 重写run方法,传参数的时候要写init,但是注意要在init方法中运行父类的init方法 Windows下写代码开启子进程时,必须写上if ...
- Earth Wind 一个查看全球风向的网站
可以查看整个地球的全貌 ,还能定位你的位置,特别是动画挺有意思 网址:https://earth.nullschool.net/#current/wind/surface/level/orthogra ...
- 【c# 数据库】对数据库进行增删查改
1.DataGridView链接数据库 2.链接数据库 using System.Data.SqlClient; SqlConnection con = null; //创建SqlConnection ...
- zabbix学习笔记----安装----2019.03.26
1.zabbix官方yum源地址:repo.zabbix.com 2.安装zabbix server zabbix server使用mysql作为数据库,在zabbix 3.X版本,安装zabbix- ...
- ajax获取数据中文显示问号
技术交流群:816227112 问题: 解决 : 在 response.getWriter() 之前加上 response.setContentType("text/html;charset ...