传送门

线段树优化dpdpdp入门题。

要求把nnn个数分成kkk段,每段价值为里面不相同的数的个数,求所有段的价值之和最大值。n≤35000,k≤50n\le35000,k\le50n≤35000,k≤50


先考虑直接暴力dpdpdp,fj,if_{j,i}fj,i​表示把前iii个分成jjj组的最优值。

显然fj,i=max⁡j−1≤k≤i−1{fj−1,k+W(k+1,i)}f_{j,i}=\max\limits_{j-1\le k\le i-1}\{f_{j-1,k}+W(k+1,i)\}fj,i​=j−1≤k≤i−1max​{fj−1,k​+W(k+1,i)}

于是就有了一个O(n2k)O(n^2k)O(n2k)的做法。

现在考虑优化求fj,i+W(k+1,i)f_{j,i}+W(k+1,i)fj,i​+W(k+1,i)的做法。

我们考虑增量法,即枚举当前层的iii的时候考虑coloricolor_icolori​对之前所有的fff的贡献。

对于这种相同颜色只考虑一次贡献的题有这么一个固定的套路:我们记当前颜色上一次出现的位置为pre,则这个颜色会对[pre+1,i]或者[pre,i-1]这一段产生贡献

对于这道题可以动态维护fj−1,k+W(k+1,j)f_{j-1,k}+W(k+1,j)fj−1,k​+W(k+1,j)这个值,因此我们最开始将fj−1,if_{j-1,i}fj−1,i​全部放到一棵线段树上面作为初始值,走到位置iii时把[prei,i−1][pre_i,i-1][prei​,i−1]维护的值全部加111即可。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=35005,K=55;
int tmp=0,a[N],f[2][N],n,k,pre[N],mp[N];
namespace SGT{
	#define lc (p<<1)
	#define rc (p<<1|1)
	#define mid (l+r>>1)
	int mx[N<<2],add[N<<2];
	inline void pushup(int p){mx[p]=max(mx[lc],mx[rc]);}
	inline void pushnow(int p,int v){mx[p]+=v,add[p]+=v;}
	inline void pushdown(int p){if(add[p])pushnow(lc,add[p]),pushnow(rc,add[p]),add[p]=0;}
	inline void build(int p,int l,int r){
		add[p]=0;
		if(l==r){mx[p]=f[tmp^1][l];return;}
		build(lc,l,mid),build(rc,mid+1,r),pushup(p);
	}
	inline void update(int p,int l,int r,int ql,int qr,int v){
		if(ql>qr)return;
		if(ql<=l&&r<=qr)return pushnow(p,v);
		pushdown(p);
		if(qr<=mid)update(lc,l,mid,ql,qr,v);
		else if(ql>mid)update(rc,mid+1,r,ql,qr,v);
		else update(lc,l,mid,ql,mid,v),update(rc,mid+1,r,mid+1,qr,v);
		pushup(p);
	}
	inline int query(int p,int l,int r,int ql,int qr){
		if(ql>qr)return -0x3f3f3f3f;
		if(ql<=l&&r<=qr)return mx[p];
		pushdown(p);
		if(qr<=mid)return query(lc,l,mid,ql,qr);
		if(ql>mid)return  query(rc,mid+1,r,ql,qr);
		return max(query(lc,l,mid,ql,mid),query(rc,mid+1,r,mid+1,qr));
	}
	#undef lc
	#undef rc
	#undef mid
}
int main(){
	n=read(),k=read();
	memset(mp,-1,sizeof(mp));
	for(ri i=1;i<=n;++i)a[i]=read(),pre[i]=mp[a[i]],mp[a[i]]=i;
	memset(f[tmp],-0x3f,sizeof(f[tmp]));
	f[tmp][0]=0;
	for(ri tt=1;tt<=k;++tt){
		tmp^=1;
		memset(f[tmp],-0x3f,sizeof(f[tmp]));
		SGT::build(1,0,n);
		for(ri i=1;i<=n;++i){
			SGT::update(1,0,n,pre[i],i-1,1);
			f[tmp][i]=SGT::query(1,0,n,tt-1,i-1);
		}
	}
	cout<<f[tmp][n];
	return 0;
}

2019.03.09 codeforces833B. The Bakery(线段树优化dp)的更多相关文章

  1. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  2. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  3. CF833B The Bakery 线段树,DP

    CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...

  4. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  5. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  6. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  7. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  8. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  9. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

随机推荐

  1. 记一次laravel-jwt修改黑名单所用redis数据库

    场景是这样的,我用tymon/jwt包做鉴权.jwt是自编码token,过期前想要强制失效只能将其加入黑名单中,黑名单一般用缓存存储. 但会有一个问题,若某种意外情况不小心执行了php aritsan ...

  2. K8s快速入门

    在k8s中所有的内容都抽象为资源,资源实例化之后,叫做对象.一般使用yaml格式的文件来创建符合我们预期期望的pod,这样的yaml文件我们一般称为资源清单 资源清单的格式: apiVersion: ...

  3. gson格式化参数 对象转Map

    前台传json到后台接收: String  params = request.getParameters("paramtes"); Map<String, Map<St ...

  4. leetcode268缺失数字

    int missingNumber(int* nums, int numsSize) { ) /; ;i<numsSize;i++){ sum = sum - nums[i]; } return ...

  5. oralce的function处理考勤时间节点以及计算工作时间

    例如: 上班时间为 8:30 到17:30,加班则到21:00:午休时间为1小时,(12:00-13:00): 晚间休息时间为半小时 (17:30-18:00),计算一批考勤数据的上班时间. 思路: ...

  6. 并发编程 process 模块的方法及运用 僵尸与孤儿

    进程创建的两种方法 Process() 继承Process 重写run方法,传参数的时候要写init,但是注意要在init方法中运行父类的init方法 Windows下写代码开启子进程时,必须写上if ...

  7. Earth Wind 一个查看全球风向的网站

    可以查看整个地球的全貌 ,还能定位你的位置,特别是动画挺有意思 网址:https://earth.nullschool.net/#current/wind/surface/level/orthogra ...

  8. 【c# 数据库】对数据库进行增删查改

    1.DataGridView链接数据库 2.链接数据库 using System.Data.SqlClient; SqlConnection con = null; //创建SqlConnection ...

  9. zabbix学习笔记----安装----2019.03.26

    1.zabbix官方yum源地址:repo.zabbix.com 2.安装zabbix server zabbix server使用mysql作为数据库,在zabbix 3.X版本,安装zabbix- ...

  10. ajax获取数据中文显示问号

    技术交流群:816227112 问题: 解决 : 在 response.getWriter() 之前加上 response.setContentType("text/html;charset ...