做完这道题,我明白了人生的一个巨大道理,那就是: 其他题研究两下,做出来几百行。数论码字前研究半天,做出来十几二十行。做完特别没有成就感。。。

  首先说下这题题意:首先,定义一个函数f[n],即为他所有因子和,他自带一个叼叼的公式

,然后问对一个给定的n,从1到n,他们的f[n]中有几个是偶数。。。pi 是n的素数因子,ei 是对应素因子的个数。。

我当时的思路历程: 首先比较简单,如果这k个式子全是奇数,那么f[n]是奇数,只要出现一个偶数,那么结果便是偶数,所以答案应该非常接近n,n大小在1万亿,所以不可能是普通遍历。。同时偶数非常多,那么可以转换为求奇数个数。。。

对于所有的素数。。如果p为2,那么那个式子一定为奇数,所以假如某个数a 满足条件,那么多给他一个素因子2,他肯定也满足条件,无论多给几个,他都满足条件(当然,最后发现只需要多给一个)    ,然后对于不是2的素数,可以发现当ei+1为奇数的时候,也就是pi这个素因子出现偶数次的时候,这一项也为奇数。那么可以想来对于某个数,他是平方得来的,那么他一定满足条件。。比如: 225。 225是的15的平方,虽然他的素因子3、5都不是2那么直接,但由于他是平方得来的,那么分解出来是 3*3*5*5,所以每一项都是奇数,所以225满足条件。基础知道了。现在拿一些数找找规律(虽然当时我是找到规律才明白的思路0.0),我当时列举了前一百个。。可以发现,1*1 2*2 3*3 4*4 5*5 。。。 都满足条件(这是必然的),那么再细化一下,对于3的次方倍来说: 9 27 81 。。 其中27因为素因子3出现次数为奇数次,不满足条件,舍去,剩下的9、81就可以看成是3的平方和9的平方。。对于每个数都是这个规律,也就是出现奇数次不满足条件。所以我们的第二个推论可以验证了这部分的数量。。同时,对于每个平方数 如 9 那么 18 也满足条件,但36虽然也满足条件,却不需要再在这个时候记入计算,因为36还等于6*6,也就是(2*3)*(2*3),所以,也可以看出规律,对于每个平方数的2倍也满足条件。。。那么,正是因为我们不去重复计算36,所以我们算出来的不会有重叠的。。

  co=2*((int)sqrt(a));  短短一句就可以解决。。。。(我当时想了半天,真正意义上的半天,从下午到深夜。。)

  最最后,要解决的就是多算的。。。比如:n=100,那么10 * 10==100,我们不能再去算2*10*10,但相信前面一段出来,这个也就没什么难度了。。。

  AC代码:

 #include<stdio.h>
#include<math.h>
int fun(long long a)
{
int co=;
int s=(int )sqrt(a);
while(s>)
{
if((long long)s*s*>a) co++;
else break;
s--;
}
return co;
}
int main()
{
long long a;
int t,co=,g=;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&a);
co=*((int)sqrt(a));
co-=fun(a);
printf("Case %d: %lld\n",g++,a-co);
}
return ;
}

哎,没怎么优化

Sigma Function的更多相关文章

  1. Uva 11395 Sigma Function (因子和)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/C   题目在文末 题意:1~n (n:1~1012)中,因子 ...

  2. LightOJ1336 Sigma Function(约数和为偶数的个数)

    Sigma Function Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit ...

  3. LightOJ 13361336 - Sigma Function (找规律 + 唯一分解定理)

    http://lightoj.com/volume_showproblem.php?problem=1336 Sigma Function Time Limit:2000MS     Memory L ...

  4. 【LightOJ1336】Sigma Function(数论)

    [LightOJ1336]Sigma Function(数论) 题面 Vjudge 求和运算是一种有趣的操作,它来源于古希腊字母σ,现在我们来求一个数字的所有因子之和.例如σ(24)=1+2+3+4+ ...

  5. Sigma Function (平方数与平方数*2的约数和是奇数)

    Sigma Function https://vjudge.net/contest/288520#problem/D Sigma function is an interesting function ...

  6. D - Sigma Function 1~n内有多少个约数和为偶数

    /** 题目:D - Sigma Function 链接:https://vjudge.net/contest/154246#problem/D 题意:求1~n内约数和为偶数的数的个数. 思路:一个数 ...

  7. LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

    题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function    PDF (English) Statistics Forum ...

  8. Sigma Function 数学 因子求和

    Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma ...

  9. Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】

    Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...

  10. LightOJ - 1336 - Sigma Function(质数分解)

    链接: https://vjudge.net/problem/LightOJ-1336 题意: Sigma function is an interesting function in Number ...

随机推荐

  1. 获取WebApplicationContext的几种方式

    加载WebApplicationContext的方式 WebApplicationContext是ApplicationContext的子接口,纵观Spring框架的几种容器,BeanFactory作 ...

  2. PostGIS中dbf file (.dbf) can not be opened.shapefile import failed

    postgis数据库文件shapefile导入 dbf file (.dbf) can not be opened.shapefile import failed. Destination: publ ...

  3. python六十九课——网络编程之TCP协议

    1.1 概述: TCP协议通过三次握手协议将客户端与服务器端连接,两端使用各自的Socket对象.Socket对象中包含了IO流,供数据传输. 即:TCP协议在客户端与服务器端通过Socket组成了I ...

  4. UVA1618-Weak Key(RMQ)

    Problem UVA1618-Weak Key Accept: 103  Submit: 588Time Limit: 3000 mSec Problem Description Cheolsoo ...

  5. 猜数字游戏,判断输入的数字与系统产生的数字是否一致(Math.random()与if嵌套循环)

    package com.summer.cn; import java.util.Scanner; public class Test041509 { /** * java 随机数 Math * Mat ...

  6. Floyed

    1.定义 可解任意两点间的最短路径 可判有向图或负权的最短路径问题,也可用于计算有向图的传递闭包 2.算法描述 简单点说,就是暴力遍历 时间复杂度O(n^3) 下面是简简单单的代码: #include ...

  7. linux日志:syslogd和klogd及syslog

    一. 日志守护进程 syslogd和klogd是很有意思的守护进程,syslogd是一个分发器,它将接收到的所有日志按照/etc/syslog.conf的配置策略发送到这些日志应该去的地方,当然也包括 ...

  8. [SDOI2017]天才黑客[最短路、前缀优化建图]

    题意 一个 \(n\) 点 \(m\) 边的有向图,还有一棵 \(k\) 个节点的 trie ,每条边上有一个字符串,可以用 trie 的根到某个节点的路径来表示.每经过一条边,当前携带的字符串就会变 ...

  9. 面试 12:玩转 Java 快速排序

    终于轮到我们排序算法中的王牌登场了. 快速排序由于排序效率在同为 O(nlogn) 的几种排序方法中效率最高,因此经常被采用.再加上快速排序思想——分治法也确实非常实用,所以 在各大厂的面试习题中,快 ...

  10. Windows Community Toolkit 3.0 - UniformGrid

    概述 UniformGrid 控件是一个响应式的布局控件,允许把 items 排列在一组均匀分布的行或列中,以填充整体的可用显示空间,形成均匀的多个网格.默认情况下,网格中的每个单元格大小相同. 这是 ...