[HEOI2016/TJOI2016]字符串
嘟嘟嘟
今天复习一下SAM。
lcp固然不好做,干脆直接翻过来变成后缀。首先答案一定满足单调性,所以我们二分lcp的长度\(mid\),然后判断\(s[d \ldots d + mid - 1]\)是否在\(s[b \ldots a]\)(别忘了整个串是反过来的)中出现即可。
怎么判断是否出现呢?其实就是判断这个子串的endpos是否在\(s[b + mid - 1 \ldots a]\)中,因此我们要求出SAM上的每一个节点的endpos集合,这就要用到线段树合并了。
需要注意的是,并不是直接在\(d\)在SAM上的节点的线段树开始找,需要一直往上跳祖先,直到满足这个节点的len最小,且仍\(\geqslant mid\)。因为这样endpos集合的元素就会更多,找到的概率就更大。
线段树合并没有垃圾回收,不过出题人比较良心,不卡。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
const int N = 20;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
char s[maxn];
int n, m, len;
struct Tree
{
int ls, rs, sum;
}t[maxn * N * N];
int root[maxn << 1], cur[maxn << 1], tcnt = 0;
In void update(int& now, int l, int r, int id)
{
if(!now) now = ++tcnt;
if(l == r) {++t[now].sum; return;}
int mid = (l + r) >> 1;
if(id <= mid) update(t[now].ls, l, mid, id);
else update(t[now].rs, mid + 1, r, id);
t[now].sum = t[t[now].ls].sum + t[t[now].rs].sum;
}
In int merge(int x, int y, int l, int r)
{
if(!x || !y) return x | y;
if(l == r) {t[x].sum += t[y].sum; return x;}
int mid = (l + r) >> 1, z = ++tcnt;
t[z].ls = merge(t[x].ls, t[y].ls, l, mid);
t[z].rs = merge(t[x].rs, t[y].rs, mid + 1, r);
t[z].sum = t[t[z].ls].sum + t[t[z].rs].sum;
return z;
}
In int query(int now, int L, int R, int l, int r)
{
if(!now) return 0;
if(L == l && R == r) return t[now].sum;
int mid = (l + r) >> 1;
if(R <= mid) return query(t[now].ls, L, R, l, mid);
else if(L > mid) return query(t[now].rs, L, R, mid + 1, r);
else return query(t[now].ls, L, mid, l, mid) + query(t[now].rs, mid + 1, R, mid + 1, r);
}
struct Sam
{
int las, cnt;
int tra[maxn << 1][27], len[maxn << 1], link[maxn << 1];
In void init() {link[las = cnt = 0] = -1;}
In void insert(int c)
{
int now = ++cnt, p = las;
len[now] = len[las] + 1;
while(~p && !tra[p][c]) tra[p][c] = now, p = link[p];
if(p == -1) link[now] = 0;
else
{
int q = tra[p][c];
if(len[q] == len[p] + 1) link[now] = q;
else
{
int clo = ++cnt;
memcpy(tra[clo], tra[q], sizeof(tra[q]));
len[clo] = len[p] + 1;
link[clo] = link[q], link[q] = link[now] = clo;
while(~p && tra[p][c] == q) tra[p][c] = clo, p = link[p];
}
}
las = now;
}
int buc[maxn << 1], pos[maxn << 1];
In void solve()
{
for(int i = 1; i <= cnt; ++i) ++buc[len[i]];
for(int i = 1; i <= cnt; ++i) buc[i] += buc[i - 1];
for(int i = 1; i <= cnt; ++i) pos[buc[len[i]]--] = i;
for(int i = cnt; i; --i)
{
int now = pos[i], fa = link[now];
root[fa] = merge(root[fa], root[now], 0, n - 1);
}
}
}S;
int fa[N + 2][maxn << 1];
In bool judge(int len, int x, int L, int R)
{
for(int i = 20; i >= 0; --i)
if(fa[i][x] && S.len[fa[i][x]] >= len) x = fa[i][x];
return query(root[x], L + len - 1, R, 0, n - 1);
}
int main()
{
//freopen("ha.in", "r", stdin);
//freopen("ha.out", "w", stdout);
n = read(), m = read();
scanf("%s", s);
len = strlen(s); S.init();
reverse(s, s + len);
for(int i = 0; i < n; ++i)
{
S.insert(s[i] - 'a'); cur[i] = S.las;
update(root[cur[i]], 0, n - 1, i);
}
S.solve();
for(int i = 1; i <= S.cnt; ++i) fa[0][i] = S.link[i];
for(int j = 1; j <= N; ++j)
for(int i = 1; i <= S.cnt; ++i) fa[j][i] = fa[j - 1][fa[j - 1][i]];
for(int i = 1; i <= m; ++i)
{
int a = n - read(), b = n - read(), c = n - read(), d = n - read();
int L = 0, R = min(a - b + 1, c - d + 1);
while(L < R)
{
int mid = (L + R + 1) >> 1;
if(judge(mid, cur[c], b, a)) L = mid;
else R = mid - 1;
}
write(L), enter;
}
return 0;
}
[HEOI2016/TJOI2016]字符串的更多相关文章
- BZOJ 4556 [HEOI2016/TJOI2016]字符串
BZOJ 4556 [HEOI2016/TJOI2016]字符串 其实题解更多是用后缀数组+数据结构的做法,貌似也不好写. 反正才学了 sam 貌似比较简单的做法. 还是得先二分,然后倍增跳到 $ s ...
- P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案
$ \color{#0066ff}{ 题目描述 }$ 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须 ...
- [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)
后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...
- 【[HEOI2016/TJOI2016]字符串】
码农题啊 上来先无脑一个\(SA\)的板子,求出\(SA\)和\(het\)数组 我们只需要从\(sa[i]\in[a,b]\)的所有\(i\)中找到一个\(i\)使得\(sa[i]\)和\(rk[c ...
- luoguP4094 [HEOI2016/TJOI2016]字符串
题意 考虑二分答案\(mid\),现在我们要判断\(s[c...c+mid-1]\)是否在\(s[a...b]\)出现过. 首先找到\(s[c...c+mid-1]\)所在的状态: 建出\(paren ...
- BZOJ4556 HEOI2016/TJOI2016字符串 (后缀树+主席树)
二分答案后相当于判断一个区间的后缀与某个后缀的最长公共前缀是否能>=ans.建出后缀树,在上述问题中后者所在节点向上倍增的跳至len>=ans的最高点,然后相当于查询子树中是否有该区间的节 ...
- HEOI2016/TJOI2016 字符串问题
题目链接:戳我 非常不好意思,因为想要排版,所以今天先只把代码贴出来,明天补题解. 40pts暴力:直接暴力匹配 #include<iostream> #include<cstrin ...
- 洛谷 P4094 [HEOI2016/TJOI2016]字符串(SA+主席树)
题面传送门 一道码农题---- u1s1 感觉这类题目都挺套路的,就挑个有代表性的题写一篇题解罢. 首先注意到答案满足可二分性,故考虑二分答案 \(mid\),转化为判定性问题. 考虑怎样检验 \(m ...
- cdq分治(hdu 5618 Jam's problem again[陌上花开]、CQOI 2011 动态逆序对、hdu 4742 Pinball Game、hdu 4456 Crowd、[HEOI2016/TJOI2016]序列、[NOI2007]货币兑换 )
hdu 5618 Jam's problem again #include <bits/stdc++.h> #define MAXN 100010 using namespace std; ...
随机推荐
- Hibernate入门(十一)多对多案例
Hibernate多对多案例 1.用户对角色 DROP TABLE IF EXISTS emp_role; DROP TABLE IF EXISTS employee; DROP TABLE IF E ...
- 关于Object数组强转成Integer数组的问题:Ljava.lang.Object; cannot be cast to [Ljava.lang.Integer;
一.当把Object数组,强转的具体的Integer数组时,会报错. 代码如下: //数组强转报错演示 Object[] numbers = {1,2,3}; Integer[] ints = (In ...
- html之input标签(11)
1.输入框 type=“text” 就是一个简单的输入框 <body> <input type="text"> </body> 2.密码输入框 ...
- writing objects : 值%停住
在git bush 中使用命令:git config --global http.postBuffer 524288000 因为git上传,限定一次push命令的buffer大小.
- Android EditText手机号格式化输入XXX-XXXX-XXXX
先来效果图: 设置手机格式化操作只需要设置EditText的addTextChangedListener的监听,下面看代码 /*editText输入监听*/ et_activity_up_login_ ...
- 前端AntD框架的upload组件上传图片时遇到的一些坑
前言 本次做后台管理系统,采用的是 AntD 框架.涉及到图片的上传,用的是AntD的 upload 组件. 前端做文件上传这个功能,是很有技术难度的.既然框架给我们提供好了,那就直接用呗.结果用的时 ...
- SparkSQL【1.x版本】字段敏感不敏感问题
一.特征 1.SqlContext默认大小写不敏感,如果DataFrame中有字段相同,大小写不同,在使用字段的时候不会引起歧义. 2.HiveContext提供更多的Hive预置函数,可以更高效的进 ...
- SQL2008无法附加数据库,提示“无法显示请求的对话框”(nColIndex实际值是-1)图文解决方法
SQL2008无法附加数据库,提示“无法显示请求的对话框”(nColIndex实际值是-1)图文解决方法 SQL2008无法附加数据库,提示“无法显示请求的对话框”(nColIndex实际值是-1)图 ...
- 如何获取Azure AD tenant的tenant Id?
一般情况下,Azure AD用户知道自己tenant域名,因为域名是账户的后缀,例如:contoso.onMicrosoft.com.如果你还不了解什么是Azure AD tenant,可 ...
- C# WINFORM 应用程序动态读写xml config文件,获取数
在实际项目里,我们需要用一个应用程序去连接多个数据库,有的进行测试,有的是数据库基本结构相同,数据不同, 我们不可能总去程序的连接字符串里去修改,更不能让用户去修改,所以需要动态去修改连接数据库配置信 ...