整体简介:

词云图,也叫文字云,是对文本中出现频率较高的“关键词”予以视觉化的展现,词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。

基于Python的词云生成类库,很好用,而且功能强大。在做统计分析的时候有着很好的应用,比较推荐。
github:https://github.com/amueller/word_cloud
官方地址:https://amueller.github.io/word_cloud/

快速生成词云:

#导入所需库
from wordcloud import WordCloud
f = open(r'C:\Users\JluTIger\Desktop\texten.txt','r').read()
wordcloud = WordCloud(background_color="white",width=1000, height=860, margin=2).generate(f) # width,height,margin可以设置图片属性
# generate 可以对全部文本进行自动分词,但是对中文支持不好
# 可以设置font_path参数来设置字体集
#background_color参数为设置背景颜色,默认颜色为黑色 import matplotlib.pyplot as plt
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
wordcloud.to_file('test.png')
# 保存图片,但是在第三模块的例子中 图片大小将会按照 mask 保存
  • 运行时遇到的问题:

报错:(unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escap

  • 原因及解决办法:

文档我是放在桌面里的,起初读取文档的命令是:f = open('C:\Users\JluTIger\Desktop\texten.txt','r').read()

一直报错:(unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape

后来发现,在Python中\是转义符,\u表示其后是UNICODE编码,因此\User在这里会报错,在字符串前面加个r表示就可以了

  • 效果:

自定义字体颜色:

下段代码来自wordcloud官方的github。

#!/usr/bin/env python
"""
Colored by Group Example
======================== Generating a word cloud that assigns colors to words based on
a predefined mapping from colors to words
基于颜色到单次的映射,将颜色分配给单次,生成词云。
""" from wordcloud import (WordCloud, get_single_color_func)
import matplotlib.pyplot as plt class SimpleGroupedColorFunc(object):
"""Create a color function object which assigns EXACT colors
to certain words based on the color to words mapping
创建一个颜色函数对象,它根据颜色到单词的映射关系,为单词分配精准的颜色。 Parameters
参数
----------
color_to_words : dict(str -> list(str))
A dictionary that maps a color to the list of words. default_color : str
Color that will be assigned to a word that's not a member
of any value from color_to_words.
""" def __init__(self, color_to_words, default_color):
self.word_to_color = {word: color
for (color, words) in color_to_words.items()
for word in words} self.default_color = default_color def __call__(self, word, **kwargs):
return self.word_to_color.get(word, self.default_color) class GroupedColorFunc(object):
"""Create a color function object which assigns DIFFERENT SHADES of
specified colors to certain words based on the color to words mapping. Uses wordcloud.get_single_color_func Parameters
----------
color_to_words : dict(str -> list(str))
A dictionary that maps a color to the list of words. default_color : str
Color that will be assigned to a word that's not a member
of any value from color_to_words.
""" def __init__(self, color_to_words, default_color):
self.color_func_to_words = [
(get_single_color_func(color), set(words))
for (color, words) in color_to_words.items()] self.default_color_func = get_single_color_func(default_color) def get_color_func(self, word):
"""Returns a single_color_func associated with the word"""
try:
color_func = next(
color_func for (color_func, words) in self.color_func_to_words
if word in words)
except StopIteration:
color_func = self.default_color_func return color_func def __call__(self, word, **kwargs):
return self.get_color_func(word)(word, **kwargs) #text是要分析的文本内容
text = """The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!""" # Since the text is small collocations are turned off and text is lower-cased
wc = WordCloud(collocations=False).generate(text.lower()) # 自定义所有单词的颜色
color_to_words = {
# words below will be colored with a green single color function
'#00ff00': ['beautiful', 'explicit', 'simple', 'sparse',
'readability', 'rules', 'practicality',
'explicitly', 'one', 'now', 'easy', 'obvious', 'better'],
# will be colored with a red single color function
'red': ['ugly', 'implicit', 'complex', 'complicated', 'nested',
'dense', 'special', 'errors', 'silently', 'ambiguity',
'guess', 'hard']
} # Words that are not in any of the color_to_words values
# will be colored with a grey single color function
#不属于上述设定的颜色词的词语会用灰色来着色
default_color = 'grey' # Create a color function with single tone
# grouped_color_func = SimpleGroupedColorFunc(color_to_words, default_color) # Create a color function with multiple tones
grouped_color_func = GroupedColorFunc(color_to_words, default_color) # Apply our color function
# 如果你也可以将color_func的参数设置为图片,详细的说明请看 下一部分
wc.recolor(color_func=grouped_color_func) # 画图
plt.figure()
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()
  • 效果:

利用背景图片生成词云,设置停用词词集:

该段代码主要来自于wordcloud的github,你同样可以在github下载该例子以及原图片与效果图。wordcloud会把背景图中白色区域去除,只在有色区域进行绘制。

#!/usr/bin/env python
"""
Image-colored wordcloud
======================= You can color a word-cloud by using an image-based coloring strategy
implemented in ImageColorGenerator. It uses the average color of the region
occupied by the word in a source image. You can combine this with masking -
pure-white will be interpreted as 'don't occupy' by the WordCloud object when
passed as mask.
If you want white as a legal color, you can just pass a different image to
"mask", but make sure the image shapes line up.
"""
#导入必要的库
from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator # Read the whole text.
text = open(r'C:\Users\JluTIger\Desktop\texten.txt').read() # read the mask / color image taken from
# http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010
alice_coloring = np.array(Image.open(r"C:\Users\JluTIger\Desktop\alice.png")) # 设置停用词
stopwords = set(STOPWORDS)
stopwords.add("said") # 你可以通过 mask 参数 来设置词云形状
wc = WordCloud(background_color="white", max_words=2000, mask=alice_coloring,
stopwords=stopwords, max_font_size=40, random_state=42)
# generate word cloud
wc.generate(text) # create coloring from image
image_colors = ImageColorGenerator(alice_coloring) # show
# 在只设置mask的情况下,你将会得到一个拥有图片形状的词云
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.figure()
# recolor wordcloud and show
# we could also give color_func=image_colors directly in the constructor
# 我们还可以直接在构造函数中直接给颜色
# 通过这种方式词云将会按照给定的图片颜色布局生成字体颜色策略
plt.imshow(wc.recolor(color_func=image_colors), interpolation="bilinear")
plt.axis("off")
plt.figure()
plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation="bilinear")
plt.axis("off")
plt.show()
  • 请注意自己的路径设置
  • 原图

  • 效果:

词云wordcloud入门示例的更多相关文章

  1. scrapy-redis爬取豆瓣电影短评,使用词云wordcloud展示

    1.数据是使用scrapy-redis爬取的,存放在redis里面,爬取的是最近大热电影<海王> 2.使用了jieba中文分词解析库 3.使用了停用词stopwords,过滤掉一些无意义的 ...

  2. 词云wordcloud类介绍&python制作词云图&词云图乱码问题等小坑

    词云图,大家一定见过,大数据时代大家经常见,我们今天就来用python的第三方库wordcloud,来制作一个大数据词云图,同时会降到这个过程中遇到的各种坑, 举个例子,下面是我从自己的微信上抓的微信 ...

  3. Python - 利用词云wordcloud,jieba和中国地图制作四大名著的热词图

    热词图很酷炫,也非常适合热点事件,抓住重点,以图文结合的方式表现出来,很有冲击力.下面这段代码是制作热词图的,用到了以下技术: jieba,把文本分词 wordcloud,制作热图 chardet,辨 ...

  4. 词云-wordcloud

    import jiebabook = "2015.txt"txt = open(book).read()ex = {'不是','就是','的话','1.1','docin','ww ...

  5. python抓取数据构建词云

    1.词云图 词云图,也叫文字云,是对文本中出现频率较高的"关键词"予以视觉化的展现,词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨. 先看几个词 ...

  6. 已知词频生成词云图(数据库到生成词云)--generate_from_frequencies(WordCloud)

    词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_f ...

  7. 用Python生成词云

    词云以词语为基本单元,根据词语在文本中出现的频率设计不同大小的形状以形成视觉上的不同效果,从而使读者只要“一瞥“即可领略文本的主旨.以下是一个词云的简单示例: import jieba from wo ...

  8. 如何用Python 制作词云-对1000首古诗做词云分析

    公号:码农充电站pro 主页:https://codeshellme.github.io 今天来介绍一下如何使用 Python 制作词云. 词云又叫文字云,它可以统计文本中频率较高的词,并将这些词可视 ...

  9. 用Python玩转词云

    第一步:引入相关的库包: #coding:utf-8 __author__ = 'Administrator' import jieba #分词包 import numpy #numpy计算包 imp ...

随机推荐

  1. npm WARN enoent ENOENT: no such file or directory, open 'C:\Users\package.json'

    在使用 npm 命令安装常用的 Node.js web框架模块 express时出现: 解决方法是 在命令行切换到安装nodejs文件下的nodejs\node_modules\npm  后执行npm ...

  2. JavaScript 笔记(一)

    Number 1.2345e3=1.2345*1000 NaN//not a num 无法计算结果 Infinity //无限大 数组 var arr=[1,2,'hello'] 下标从0开始 对象 ...

  3. Asp.net生命周期与Http协议

    Http协议,底层的东西还是不是特别熟悉,感觉要经过沉淀之后才能理解这些东西吧 1.Asp.net生命周期 Asp.net生命周期: 从发起请求开始,到IIS进行处理的全部过程,然后再到获取结果 当请 ...

  4. ReactDom

    今天工作中使用了这个,感觉很好用啊! 首先: 这个ReactDom是干嘛用的? 答:   react-dom 包提供了 DOM 特定的方法,可以在你的应用程序的顶层使用,如果你需要的话,也可以作为 R ...

  5. javascript中加号(+)操作符的作用

    // 16进制转换:+”0xFF”;              // -> 255 // 获取当前的时间戳,相当于`new Date().getTime()`:+new Date(); // 比 ...

  6. Android gradle实现多渠道号打包

    在build.gradle中添加 productFlavors{ LETV { applicationId "×××××××××××" //包名   buildConfigFiel ...

  7. 「Android」adb调试源码(针对dumpsys SurfceFlinger、trace.txt获取)

    首先对ADB作简单的阐述,接下来对adb shell dumpsys SurfaceFlinger服务的dump信息的查看.以及ANR问题如何获取trace文件并简单分析. -×*********** ...

  8. 在线图片上传、预览、裁切、放大、缩小之 cropbox.js 的应用

    cropbox.js 是一个实现了图像在线剪裁的 jQuery .YUI 插件和 JavaScript 库. 上DEMO: 上传的图片可以使用滚轮放大与缩小当前选择的图片,后点击“裁切”后,在右侧的预 ...

  9. 手把手教你全家桶之React(三)--完结篇

    前言 本篇主要是讲一些全家桶的优化与完善,基础功能上一篇已经讲得差不多了.直接开始: Source Maps 当javaScript抛出异常时,我们会很想知道它发生在哪个文件的哪一行.但是webpac ...

  10. Django-404错误处理

    404错误是用户输入错误的URL,在 URLconf 中匹配不到相应的URL而抛出的异常 如下图: 为了给用户提供一个友好的访问,需要配置404错误页面 1.在 templates 目录下新建 404 ...