传送门


思路

这思路好妙啊!

首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢。

脑洞大开想到这样一个式子:

\[\sum_{x} sum_x(All-sum_x)
\]

其中\(sum_x\)表示\(x\)子树和,\(All\)表示所有点的权值和。

发现不管哪个点为根,只要每个点的权值不变,这个式子的值就不变。

证明:对于点对\((u,v)\),\(w_u\times w_v\)被算了\(dis(u,v)\)次,因为每个在路径上的\(x\)都会算一次。

于是就有

\[W=\sum_x sum_x(All-sum_x)=All\sum_x sum_x -\sum_x sum_x^2\\
\sum_{x} sum_x^2=All\sum_x sum_x-W
\]

\(W​\)怎么统计呢?\(w_x+=\Delta w​\)时\(W+=\Delta w\sum_u w_udis(u,x)​\),后面的可以动态点分治。

以\(root\)为根时\(\sum_x sum_x\)等价于\(\sum_x w_x(dis(x,root)+1)=All+\sum_x w_xdis(x,root)\),同样可以动态点分治。

点分治的具体做法参见幻想乡战略游戏,式子基本一样,但那里的代码很繁琐,建议代码看这里。

那么就做完啦!


代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pil pair<int,ll>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 202020
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
inline void print(register int x)
{
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n,m;
ll val[sz];
struct hh{int t,nxt;}edge[sz<<1];
int head[sz],ecnt;
void make_edge(int f,int t)
{
edge[++ecnt]=(hh){t,head[f]};
head[f]=ecnt;
edge[++ecnt]=(hh){f,head[t]};
head[t]=ecnt;
} bool vis[sz];
int size[sz],mn,root,tot;
#define v edge[i].t
void findroot(int x,int fa)
{
int S=-1;
size[x]=1;
go(x) if (v!=fa&&!vis[v])
{
findroot(v,x);
chkmax(S,size[v]);
size[x]+=size[v];
}
chkmax(S,tot-size[x]);
if (chkmin(mn,S)) root=x;
}
vector<int>fa[sz],disf[sz];
ll sum[sz]; // \sum val[v]
ll Sum[sz]; // \sum val[v]*dis(x,v)
ll sumF[sz]; // \sum val[v]*dis(fa[x],v)
void dfs(int x,int par,int u,int d)
{
fa[x].push_back(u);disf[x].push_back(d);
go(x) if (v!=par&&!vis[v]) dfs(v,x,u,d+1);
}
void build(int x)
{
vis[x]=1;dfs(x,0,x,0);
int all=tot;
go(x) if (!vis[v])
{
tot=size[v];if (tot>size[x]) tot=all-size[x];mn=1e9;
findroot(v,0);
build(root);
}
}
#undef v
void add(int x,ll w)
{
drep(i,(int)fa[x].size()-1,1)
{
int u=fa[x][i];
ll d=disf[x][i],dd=disf[x][i-1];
sum[u]+=w;Sum[u]+=w*d;sumF[u]+=w*dd;
}
int u=fa[x][0],d=disf[x][0];
sum[u]+=w;Sum[u]+=w*d;
}
ll query(int x)
{
ll ret=Sum[x];
drep(i,(int)fa[x].size()-2,0)
{
int u=fa[x][i],uu=fa[x][i+1];
ll d=disf[x][i];
ret+=Sum[u]-sumF[uu]+d*(sum[u]-sum[uu]);
}
return ret;
} ll W,All;
void Add(int x,ll w)
{
W+=w*query(x);All+=w;
add(x,w);
val[x]+=w;
}
ll Query(int x){return All*(query(x)+All)-W;} int main()
{
file();
read(n,m);
int x,y,z;
rep(i,1,n-1) read(x,y),make_edge(x,y);
tot=n;mn=1e9;findroot(1,0);build(root);
rep(i,1,n) read(x),Add(i,x);
while (m--)
{
read(z);
if (z==1) read(x,y),Add(x,y-val[x]);
else read(x),printf("%lld\n",Query(x));
}
return 0;
}

洛谷P3676 小清新数据结构题 [动态点分治]的更多相关文章

  1. 洛谷P3676 小清新数据结构题 【树剖 + BIT】

    题目链接 洛谷P3676 题解 我们先维护\(1\)为根的答案,再考虑换根 一开始的答案可以\(O(n)\)计算出来 考虑修改,记\(s[u]\)表示\(u\)为根的子树的权值和 当\(u\)节点产生 ...

  2. 洛谷 P3676 - 小清新数据结构题(动态点分治)

    洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到 ...

  3. 【刷题】洛谷 P3676 小清新数据结构题

    题目背景 本题时限2s,内存限制256M 题目描述 在很久很久以前,有一棵n个点的树,每个点有一个点权. 现在有q次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方 ...

  4. 洛谷P3676 小清新数据结构题(动态点分治+树链剖分)

    传送门 感觉这题做下来心态有点崩……$RMQ$求$LCA$没有树剖快我可以理解为是常数太大……然而我明明用了自以为不会退化的点分然而为什么比会退化的点分跑得反而更慢啊啊啊啊~~~ 先膜一波zsy大佬 ...

  5. 洛谷 P3676 小清新数据结构题

    https://www.luogu.org/problemnew/show/P3676 这题被我当成动态dp去做了,码了4k,搞了一个换根的动态dp #include<cstdio> #i ...

  6. Luogu3676 小清新数据结构题 动态点分治

    传送门 换根类型的统计问题动态点分治都是很好做的. 设所有点的点权和为$sum$ 首先,我们先不考虑求$\sum\limits_i s_i^2$,先考虑如何在换根的情况下求$\sum\limits_i ...

  7. 洛谷 P3672 小清新签到题 [DP 排列]

    传送门 题意:给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列 $n \le 300, k \le 10^13$ 一下子想到hzc讲过的DP 从小到大插入,后插入不会对前插 ...

  8. [P3676]小清新数据结构题

    Description: 给你一棵树,每次询问以一个点为根时所有子树点权和的平方和 带修改 Hint: \(n\le 2*10^5\) Solution: 这题只要推出式子就很简单了 如果不换根这个平 ...

  9. [洛谷P3672]小清新签到题

    题目描述 题目还是简单一点好. 给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列a1,a2...an,然后用仙人图上在线分支定界启发式带花树上下界最小费用流解决问题,保证存 ...

随机推荐

  1. 2016-2017-2 20155324实验二《Java面向对象程序设计》实验报告

    2016-2017-2 20155324实验二<Java面向对象程序设计>实验报告 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉 ...

  2. Java Map在遍历过程中删除元素

    Java中的Map如果在遍历过程中要删除元素,除非通过迭代器自己的remove()方法,否则就会导致抛出ConcurrentModificationException异常.JDK文档中是这么描述的: ...

  3. 关于tcp queue

    半连接队列:服务端维护的与客户端保持SYN_RECV状态的连接队列,等待客户端回复,当收到客户端ack后,如果条件允许(全连接队列未达到最大值),服务端进入ESTAB状态,从半连接队列移到全连接队列的 ...

  4. mysql 架构 ~ 异地多活

    一 业务异地多活 二 核心思想 多机房提供就近服务,只有当本地机房出现问题时,才会被允许异地机房进行查询和事务操作三 数据库角度   1 多机房之间需要进行数据同步,保证每个机房都保留多机房的全部副本 ...

  5. WIN10 困扰多时的屏幕亮度 终于可以调节了-完美 -更新2018年2月28日

    总结:很多问题是自己认知不够造成的,  -- 问题解决在  修复经历二,可直接跳过去看  修复经历二. 首先看你屏幕亮度是集成还是独立显卡决定的(一般是集成),所以下面 修复经历一折腾独立显卡驱动没什 ...

  6. FLASK-----基本知识(一)

    中文文档(http://docs.jinkan.org/docs/flask/) 英文文档(http://flask.pocoo.org/docs/0.11/) FLASK介绍 Flask是一个基于P ...

  7. 常用的Character方法

  8. 【sql inject】sql盲注技巧

    SAMPLE 知识点 使用 AND 1 = 1 / 1 或者 1 = 1 / 0 判断是否存在注入,如果正确就会返回页面,如果错误就是1/0语法错误使得页面报错: queueID = 743994 A ...

  9. LwIP Application Developers Manual1---介绍

    1.前言 本文主要是对LwIP Application Developers Manual的翻译 2.读者(应用开发手册的读者) 谁适合读这份手册 网络应用的开发者 想了解lwIP的网络应用开发者 阅 ...

  10. Control算法相关

    Control算法相关 添加新的control算法官方指导教程. 创建一个控制器: 在文件control_config中添加新控制器的配置信息: 注册新控制器. 如何添加新的CAN卡. Apollo中 ...