题目链接:https://nanti.jisuanke.com/t/31716

题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直到无糖果剩余为止。给出数字n,问有多少种分发糖果的方法。

样例输入 复制

1
4

样例输出 复制

8

解题思路:我们可以这样想,一个糖果的话,应该是只有1种方法记为x1,如果是两个糖果的话,有两种方法即为x2,分别为(1,1)和(2),从中我们可以想到如果n个糖果的话,就可以分为第n个人取1个的话就有x(n-1)种,去两个的话就有x(n-2)种,依次类推,第n个人取n-1个的话就有x1种方法,第n个人取n个的话就只有1种方法。即x(n)=x1+x2+……+x(n-1)+1=2^(n-1);

其实就是一个简单的拆数问题,比如这里有三个学生,老师有三个糖果,有四种分法:{3,0,0},
{2,1,0},{1,2,0},{1,1,1}

一个数的拆法其实就是2^(N-1)

也可以打表找规律,都很简单。

但是有一个难点是n的范围特别大,可以达到10^100000,不能通过整型数字存储,而只能用字符数组存储这个数,这样的话我们肯定不能直接用快速幂。所以这里就要采用一个小技巧,也就是一个性质,2^N模一个质数,它的结果是具有周期性的,周期长度为mod-1,这道题就利用这个周期
性质,具体步骤就是:先把n转化成模mod-1下的的数,然后用这个数计算快速幂。

附上代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e9+;
char s[]; ll qpow(ll a,ll n)
{
ll ans=;
while(n)
{
if(n&) ans=(ans*a)%mod;
n>>=;
a=(a*a)%mod;
}
return ans;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%s",s);
int len=strlen(s);
ll MOD=mod-,temp=;
for(int i=;i<len;i++)
temp=(temp*+s[i]-'')%MOD; //将n转化成mod-1内的数
if(temp==) temp=MOD; //特判temp==0时,temp即为mod-1
temp=(temp-+MOD)%MOD;
ll ans=qpow(,temp);
cout<<ans<<endl;
}
return ;
}

ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)的更多相关文章

  1. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

  2. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)

    https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies

    There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more in ...

  4. ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解

    题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 :所以3共有4种),n最多有1e5位,答案取模p = 1e9+7 思路:就是往n个东西中间插任意个板子 ...

  5. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  6. ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies

    There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...

  7. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  8. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. js手机短信验证

    贴代码之前,我们先讲一下这里我们用到的技术主要有1个.setInterval(),这个方法可以实现倒计时的效果. css: .weui_btn_disabled.weui_btn_default { ...

  2. babel (三) babel polly-fill

    Babel includes a polyfill that includes a custom regenerator runtime and core-js. This will emulate ...

  3. vant的坑

    1.轮播图设置, .img { width: 100%; height: 100%; object-fit: cover; touch-action: none; } 如果不设置不能达到 保持纵横比缩 ...

  4. kubernetes常用命令

    #.查询信息 kubectl get [需要查询的服务]   node 节点componentstatuses 简写 cs 组件状态namespaces 简写 ns 名命空间pod pod信息 添加  ...

  5. WPF设置软件界面背景为MediaElement并播放视频

    在我们的常见的软件界面设计中我们经常会设置软件的背景为SolidColorBrush或者LinerColorBrush.RadialGradientBrush 等一系列的颜色画刷为背景,有时我们也会使 ...

  6. Graphics

    Image img = Image.FromFile("g1.jpg");//建立Image对象Graphics g = Graphics.FromImage(img);//创建G ...

  7. Lodop打印旋转180度 倒着打

    方法1:打印出来后,直接把纸张倒过来.如果本身是白纸,打印机出纸内容是倒着的,可以打出来后手动倒着把纸张正过来.如果本身不是白纸,需要打印的纸张上有背景,调整进纸方向.(如果是卷纸,卷纸背景是反的,查 ...

  8. C# DataTable 操作

    添加引用 using System.Data; 创建表 //创建一个空表 DataTable dt = new DataTable(); //创建一个名为"Table_New"的空 ...

  9. orcale三表连接查询

    SELECT w.ZDBH,w.HEATINGANDAIRCONDITIONERID,  w.ZDMC,  w.CZBH,  w.CZMC,  w.CNXS,  w.ND,  w.KTJF,  w.K ...

  10. Jira的搭建

    一.环境准备 jira7.2的运行是依赖java环境的,也就是说需要安装jdk并且要是1.8以上版本,如下: java -version 除此之外,我们还需要为jira创建对应的数据库.用户名和密码, ...