ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)
题目链接:https://nanti.jisuanke.com/t/31716
题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直到无糖果剩余为止。给出数字n,问有多少种分发糖果的方法。
样例输入 复制
- 1
- 4
样例输出 复制
- 8
解题思路:我们可以这样想,一个糖果的话,应该是只有1种方法记为x1,如果是两个糖果的话,有两种方法即为x2,分别为(1,1)和(2),从中我们可以想到如果n个糖果的话,就可以分为第n个人取1个的话就有x(n-1)种,去两个的话就有x(n-2)种,依次类推,第n个人取n-1个的话就有x1种方法,第n个人取n个的话就只有1种方法。即x(n)=x1+x2+……+x(n-1)+1=2^(n-1);
其实就是一个简单的拆数问题,比如这里有三个学生,老师有三个糖果,有四种分法:{3,0,0},
{2,1,0},{1,2,0},{1,1,1}
一个数的拆法其实就是2^(N-1)
也可以打表找规律,都很简单。
但是有一个难点是n的范围特别大,可以达到10^100000,不能通过整型数字存储,而只能用字符数组存储这个数,这样的话我们肯定不能直接用快速幂。所以这里就要采用一个小技巧,也就是一个性质,2^N模一个质数,它的结果是具有周期性的,周期长度为mod-1,这道题就利用这个周期
性质,具体步骤就是:先把n转化成模mod-1下的的数,然后用这个数计算快速幂。
附上代码:
- #include<bits/stdc++.h>
- using namespace std;
- #define ll long long
- const ll mod=1e9+;
- char s[];
- ll qpow(ll a,ll n)
- {
- ll ans=;
- while(n)
- {
- if(n&) ans=(ans*a)%mod;
- n>>=;
- a=(a*a)%mod;
- }
- return ans;
- }
- int main()
- {
- int t;
- scanf("%d",&t);
- while(t--)
- {
- scanf("%s",s);
- int len=strlen(s);
- ll MOD=mod-,temp=;
- for(int i=;i<len;i++)
- temp=(temp*+s[i]-'')%MOD; //将n转化成mod-1内的数
- if(temp==) temp=MOD; //特判temp==0时,temp即为mod-1
- temp=(temp-+MOD)%MOD;
- ll ans=qpow(,temp);
- cout<<ans<<endl;
- }
- return ;
- }
ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)的更多相关文章
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)
https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies
There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more in ...
- ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解
题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 :所以3共有4种),n最多有1e5位,答案取模p = 1e9+7 思路:就是往n个东西中间插任意个板子 ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies
There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
随机推荐
- ios点击输入框,界面放大解决方案
当我们编写的input宽度没有占满屏幕宽度,而且又没有申明meta,就会出现点击输入框,界面放大这个问题. 下面我直接给出解决方案: <meta name="viewport" ...
- 通过event记录sql
providers EventServiceProvider.php 添加 protected $listen = [ 'Illuminate\Database\Events\QueryExecute ...
- [转帖]中关村:LED屏幕和OLED屏幕有什么区别?答案在这里
LED屏幕和OLED屏幕有什么区别?答案在这里 中关村在线 01-0810:40 目前的电视市场,更新换代的频率越来越快,无论是国产品牌还是合资品牌,都不约而同的推出了全新产品.这离不开人们对更好 ...
- Spring 基于XML配置
基于XML的配置 对于基于XML的配置,Spring 1.0的配置文件采用DTD格式,Spring2.0以后采用Schema格式,后者让不同类型的配罝拥有了自己的命名空间,使得配置文件更具扩展性.此外 ...
- JS --- 本地保存localStorage、sessionStorage用法总结
JS的本地保存localStorage.sessionStorage用法总结 localStorage.sessionStorage是Html5的特性,IE7以下浏览器不支持 为什么要掌握localS ...
- Hbase 架构体系
有2个节点进程,一个是master,另一是regionserver.
- 使用proxychains 代理终端
最近在国外的vps上搭建了一个ss服务器,在浏览器里面设置socks5代理上网很方便, 但是终端里面却只支持http方式的代理配置,网上有socks转http代理的方式,但是最近发现一个更为简单的方式 ...
- Tomcat配置Https环境
windows环境下:http://blog.csdn.net/supersky07/article/details/7407523 linux环境下:http://blog.csdn.net/cuk ...
- git reset 版本回退的三种用法总结
git reset (–mixed) HEAD~1 回退一个版本,且会将暂存区的内容和本地已提交的内容全部恢复到未暂存的状态,不影响原来本地文件(未提交的也不受影响) git reset –soft ...
- 学习 Spring (十七) Spring 对 AspectJ 的支持 (完结)
Spring入门篇 学习笔记 @AspectJ 的风格类似纯 java 注解的普通 java 类 Spring 可以使用 AspectJ 来做切入点解析 AOP 的运行时仍旧是纯的 Spring AO ...