[纯C#实现]基于BP神经网络的中文手写识别算法
效果展示
这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是.
OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序,抽象成一个维度.这样识别的就是3维的数据了.识别起来简单很多.
最近需要做一个中文手写识别算法.搜索了网上的一些前人作品,发现都是只讲了理论,不讲实际开发.于是打算自己开发一个,并记录开发过程.
由于代码量比较多,这里不会全部贴上来讲解,代码已经放到了gitee,部分地方需对照代码进行观看,下面有URL.
思路
网上关于中文手写识别的文章不多,不过数字OCR方案确有很多.
虽然中文手写识别并不等于OCR,但总归有点关联性.
我发现数字的OCR大概是这么个套路:
神经网络的输出层每一个节点对应一个数字的相似度.而中文不能这么做.因为中文有上万字.
不过这是手写识别,我们有用户写字的时候每一笔的数据,可以先识别笔画.然后再根据笔画,去识别字.
资源获取与数据模型设定
首先我们需要一个字典,用于提供所有中文汉字的笔画顺序,这玩意在百度搜索"字典 mdb"能得到很多(我会放到源码里)
通过查看字典的"笔顺"字段,我们可以看到,字典中的字,笔顺分为了: 横,竖,撇,捺,其它 这5个类型
横竖撇捺好弄,不过这个"其它"有点特别,通过查询.中文的笔画有30多种.
我按照长相,将笔画大体分成了这7种:
ID | 笔画 | 名称 |
---|---|---|
0 | ㇐ | 横 |
1 | ㇑ | 竖 |
2 | ㇓ | 撇 |
3 | ㇏ | 捺 |
4 | ㇕㇖⺄ | 横折 |
5 | ㇗㇙㇞㇟ㄣ㇂ ㇛㇜ | 竖折 |
6 | ㇡ ㇌ | 横折折折 |
也就是说,我这里是分成7种来识别的,后续使用的时候,是再转换为5种笔画.
我们将用户输入的笔画顺序识别出来后,经过字符串相似度算法,识别出用户输入的笔画,与字典中每个字的笔画的相似度,然后进行排序.
关于字符串相似度,这里采用的是 levenshtein算法,相关代码可在我的源码中找到.
开发采集工具&采集一些数据
首先我需要采集一些笔画数据,然后交给神经网络,训练神经网络识别能力.
这里开发了一个采集工具,用来采集一些用于训练的数据:
Gitee查看源码>>
Github查看源码>>
使用方法如下:
保存后会得到一个json文件,里面是采集到的笔画数据:
每个笔画采集30次之后保存,在保存后,请将这个文件改名,然后再重新打开一次软件,采集下一个笔画
把上面表格中的7个笔画每一个采集30次左右(次数不需要完全一样)每个笔画单独采集到一个文件
再额外采集一个用于测试的数据:
训练过程
这里选择BP网络的原因是因为网络上有直接复制即可用的C#代码,毕竟我是用C#开发,基于C#的神经网络代码很少.大部分是基于C或者python的.
我对我找到的BP网络的部分代码进行了修改,训练完后可以把训练结果保存为单个json文件.也可以读取json文件接着训练,或着运用里面的训练结果进行识别.
把上面采集的7个笔画样本放入神经网络训练:
如你所见,我另外开发了一个训练工具,读取前面步骤采集到的笔画数据生成矩阵,给BP网络,进行训练.
矩阵的格式:
**注:我用来训练的矩阵的大小是固定的16*16,以下只是为了说明而做的一个缩小版:**
\ | 第0列 | 第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 更多列 |
---|---|---|---|---|---|---|---|
第0行 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . |
第1行 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | . |
第2行 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | . |
第3行 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | . |
第4行 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | . |
第5行 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . |
更多行 | . | . | . | . | . | . | . |
注意:我在矩阵中使用0~1之间的浮点数标识出了哪个像素是先画出来的,哪个像素是后画出来的.
不过神经网络输入的矩阵是1维的,所以在代码中可以看到,我写了个GetDim1Matrix方法,将这里面的数据,全部连接到了一起.
在代码中,有一个MatrixData类,这个类用于存放训练或者识别用的数据并进行矩阵的输出,可以在这里面找到生成矩阵的算法.
训练完成后,使用训练结果,对测试数据进行了测试.并生成了训练结果文件:
训练工具源码:
Gitee查看源码>>
Github查看源码>>
实际使用
识别功能和采集工具做在一起了,将神经网络训练出来的结果"GData.json"文件放进采集工具工程里.运行工程即可.
在实际使用中效果没有想象中的好,笔画相似度高的字比较多,得把字写得比较工整才能识别到,想要获取更好的结果,还需要对方案进行更多的优化才行.
改进计划
目前我比较倾向于这两个方案:
- 在测试中有个现象,笔画识别错误率有点高,可能需要修改笔画识别的方式,尝试用别的方式去识别笔画
- 我找到的字典有问题,字符虽然很全,但是笔画分类才5种,只分为"横,竖,撇,捺,其它",这个"其它"比较碍事,可以尝试找笔画分类更细的字典来解决这个问题.
如果对这个项目感兴趣或者有更好优化的思路,可以给我留言
[纯C#实现]基于BP神经网络的中文手写识别算法的更多相关文章
- 基于BP神经网络的字符识别研究
基于BP神经网络的字符识别研究 原文作者:Andrew Kirillov. http://www.codeproject.com/KB/cs/neural_network_ocr.aspx 摘要:本文 ...
- 基于BP神经网络的简单字符识别算法自小结(C语言版)
本文均属自己阅读源代码的点滴总结.转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email:gzzaigcn2009@163.com 写在前面的闲话: 自我感觉自己应该不是一个非常 ...
- Tensorflow之基于MNIST手写识别的入门介绍
Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...
- 基于tensorflow的MNIST手写识别
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...
- densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...
- Windows下Tesseract4.0识别与中文手写字体训练
一 . tesseract 4.0 安装及使用 1. tesseract 4.0 安装 安装包下载地址: http://digi.bib.uni-mannheim.de/tesseract/tesse ...
- 基于steam的游戏销量预测 — PART 3 — 基于BP神经网络的机器学习与预测
语言:c++ 环境:windows 训练内容:根据从steam中爬取的数据经过文本分析制作的向量以及标签 使用相关:无 解释: 就是一个BP神经网络,借鉴参考了一些博客的解释和代码,具体哪些忘了,给出 ...
- tensorflow神经网络与单层手写字识别
1.知识点 """ 1.基础知识: 1.神经网络结构:1.输入层 2.隐含层 3.全连接层(类别个数=全连接层神经元个数)+softmax函数 4.输出层 2.逻辑回归: ...
- Pytorch1.0入门实战一:LeNet神经网络实现 MNIST手写数字识别
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表 ...
随机推荐
- 如何引入iconfont图标与Element-UI组件
一.iconfont图标 iconfont方便又好用,介绍一下如何在vue项目中引入iconfont 1.进入iconfont官网 www.iconfont.cn 2.登录自己账户 3.选择图标后下载 ...
- swagger2常用注解
常用注解: @Api()用于类: 表示标识这个类是swagger的资源 @ApiOperation()用于方法: 表示一个http请求的操作 @ApiParam()用于方法,参数,字段说明: 表示对参 ...
- 准备学习wrf
namelist.wps 中的 geog_data_path=后面的文件夹的文件即土地覆被资料:(看下图) 推荐中科院地理所承担的地球系统科学数据共享平台上共享的100m分辨率资料,官网 http: ...
- Bartender标签传参与打印
在VS中添加bartender的COM组件引用后(一定要添加,否则会提示找不到BarTender.Application): /// <summary> /// Bartender模板打印 ...
- 实验九 ZStack 广播通信实验
实验九 ZStack 广播通信实验[实验目的]1. 了解 ZigBee 广播通信的原理2. 掌握在 ZigBee 网络中进行广播通信的方法[实验设备]1. 装有 IAR 开发工具的 PC 机一台2. ...
- 第二次作业-分布式版本控制系统Git的安装与使用
本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103 我的github远程仓库的地址:https://github ...
- springboot入门1
1引入springboot父依赖,和 spring-boot-starter-web的启动器 依赖引入后jar包展示依赖的情况 入门工程 配置数据源 package com.boot.web.con ...
- Spring MVC的原理及配置详解
网址链接:https://www.cnblogs.com/baiduligang/p/4247164.html
- 深入理解CSS系列(二):为什么height:100%不生效?
对于height属性,如果父元素height为auto,只要子元素在文档流中(即position不等于fixed或者absolute),其百分比值完全就被忽略了.这是什么意思呢?首先来看个例子,比如, ...
- 正则替换HTML里的style属性
一个网友问: <p class="a" style="font-size: 12pt; font-family: ""; color: red ...