C Looooops POJ - 2115 (exgcd)
for(int i=A;i!=B;i+=C)
内容;
其中所有数都是k位二进制数,即所有数时膜2^k意义下的。我们的目标时球出 内容 被执行了多少次。
Input
Output
Sample Input
1 3 2 4
1 5 2 4
1 2 4 3
0 0 0 0
Sample Output
1
2
FOREVER 这和青蛙的那个题是一样的 想象成跑圈
写出式子 就可以了
注意最后对x的处理
ax + by = c
最后 b /= d;
x = (x % b + b) % b;
输出x即可
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL gcd(LL a, LL b)
{
return b == ? a : gcd(b, a % b);
} LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main()
{
LL a, b, c, k, x, y, d;
while(cin >> a >> b >> c >> k)
{
if(a == && b == && c == && k == )
break;
LL s = 1LL << k;
if((b - a) % gcd(c, s))
{
cout << "FOREVER" << endl;
continue;
}
exgcd(c, s, d, x, y);
s /= d;
x *= (b - a) / d;
x = (x % s + s) % s;
cout << x << endl;
} return ;
}
C Looooops POJ - 2115 (exgcd)的更多相关文章
- B - C Looooops POJ - 2115 (扩展欧几里得)
题目链接:https://cn.vjudge.net/contest/276376#problem/B 题目大意:for( int i= A ; i != B; i+ = c ),然后给你A,B,C ...
- 青蛙的约会 POJ - 1061 (exgcd)
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...
- 扩展欧几里得算法(EXGCD)学习笔记
0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...
- 【题解】POJ 2115 C Looooops (Exgcd)
POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...
- C Looooops POJ - 2115 拓展gcd 有一个定理待补()
补算法导论P564 MODULAR-LINEAR-EQUATION-SOLVER算法(P564)
- POJ题目(转)
http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法: (1)枚举. (poj1753,poj29 ...
- E - The Balance POJ - 2142 (欧几里德)
题意:有两种砝码m1, m2和一个物体G,m1的个数x1, m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出 x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- Repeater POJ - 3768 (分形)
Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...
随机推荐
- IntelliJ IDE 常用配置
一. Intellij IDE 安装与破解 详细安装步骤 二.IntelliJ Maven 配置 查看: 使用IntelliJ IDEA 配置Maven(入门) 三.IntelliJ Tomcat 配 ...
- Xamarin Android ListView 控件使用
在项目中通常用到了ListView控件,示例如下: create the listitem class ,eg; public class ColorItem { public string Colo ...
- Python全栈开发之路 【第十八篇】:Ajax技术
Ajax技术 Ajax = 异步 JavaScript 和 XML. Ajax 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. 1.jQuery的load()方法 jQuery loa ...
- OO博客作业1:第1-3周作业总结
(1)基于度量来分析自己的程序结构 注:UML图中每个划分了的圆角矩形代表一个类或接口,箭头可代表创建.访问数据等行为.类的图形内部分为3个部分,从上到下依次是类的名称.类包含的实例变量(属性).类实 ...
- Jq相关常用操作
1.select下拉列表操作 $(".kstitle").live('change', function () { var workType = $(this).val(); // ...
- H5 24-CSS三大特性之继承性
24-CSS三大特性之继承性 我是段落 我是段落 我是超链接 我是大标题 <!DOCTYPE html> <html lang="en"> <head ...
- 使用git将本地项目推送到码云私有仓库
https://blog.csdn.net/qq_33876553/article/details/80111946 2018年04月27日 19:53:33 桥路丶 阅读数:2958 前言 之前博主 ...
- semantic-ui 模态窗口
模态窗口即加了ui modal的class的div而已,会有点像是alert弹出框的形式,但是美观一点点.
- PAT L2-013 红色警报
https://pintia.cn/problem-sets/994805046380707840/problems/994805063963230208 战争中保持各个城市间的连通性非常重要.本题要 ...
- 二进制安装MongoDB
1.下载mongodb cd /usr/local/src/ wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-4.0.5.tgz ...